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Motivation

Toroidal rotation is important for stabilizing
tokamak plasmas (in the high-beta regime)

One mechanism for significant slowing of toroidal
rotation is locking of a mode (i.e. island) to a
stationary external “error field” (nonaxisymmetric
field due to coil misalignment) — seen at DIII-D

The ability to model this in NIMROD would be
advantageous — starting with adding resonant
error fields to the resistive wall boundary
condition for a cylinder

After proof-of-principle in cylinder, the error field
boundary condition can be implemented in a
toroidal geometry



Resistive wall boundary condition allows

non-zero B, at the wall
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* resistive wall boundary condition
in a periodic cylinder
benchmarked for a simple
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e additional terms can be included
in the boundary condition to
allow for external 3D magnetic
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over the wall-time.




External resonant field is modeled as a helical

current sheet that affects the B-field at the wall
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Tangential electric field dependent on

perturbed plasma fields and input parameters

Electric field boundary condition:
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Stable g=4 resonant equilibrium with

zero-beta is used for error-field studies
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Rotation sustains eddy currents at resonant

surface which shield the error field

 Toroidal flow (along the axis of the cylinder in cylindrical
geometry) is present in tokamaks

* Considering only linear terms, toroidal rotation maintains
eddy currents at the resonant surface which shield the interior
plasma (r<r,) from the external error field.

* Rotation above a critical value will shield the plasma interior
to the rational surface from the error-field.
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* A uniform equilibrium axial flow is implemented in error-field
test cases.



EM torque and opposing viscous torques at

rational surface balance

* When non-linear terms are included, the balance between
electromagnetic and viscous torques at the rational surface
determine the net rotation of the plasma.
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* Plasma rotation must be above the
critical value to see an abrupt lo
cking or hysteresis as error-field is
lowered.

, *Theory assumes linear island
| Br,vac| evolution — not necessarily the case




Linear result: error-field penetrates plasma to
g=4 surface and forms island

ve0=0 m/s, B, (rs)=2.8 x 10> T




Linear result: equilibrium flow shields plasma
by maintaining an eddy current

ve0=1500 m/s > v_crit=1390 m/s, (rs)=2.8 x 10 T

Brvac




Non-linear result: large error-field can
penetrate flowing plasma

ve0=1500 m/s > v_crit=1390 m/s, (rs)=2.8 x 10> T

Brvac




Non-linear result: large error-field can

change plasma flow

* Increase in poloidal flow
decreases the net rotation
keV, and is the dominant
term (besides the
background equilibrium
flow)

ve0=1500 m/s > v_crit=1390 m/s, B, ,.(rs)=2.8 x 10> T



Non-linear result: large error-field can

produce islands that lock to the wall

e Equilibrium flow above
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Non-linear result: large error-field can

produce islands that lock to the wall

e Equilibrium flow above Contours of Re[B,]

the critical value for linear
island theory, but not
necessarily for non-linear
island theory.

* Do not see an abrupt
mode locking, but a
gradual change in total _
rotation. 5| Non-
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Conclusions

Resonant error-field boundary conditions in
NIMROD allow the formation of driven islands in
a stable equilibrium

Linear shielding of the plasma by adding
equilibrium flow is demonstrated

Nonlinear error-field penetration is
demonstrated, including the ‘slowing down’ of
the plasma in response to EM torque and
locking of islands to the wall




