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Ion equations of motion and field equations

• Lorentz force ions

dvi

dt
=

qi

mi
(E + vi × B)

dxi

dt
= vi

• Ampere’s equation

▽× B = µ0 (niqiui − neeue)

• Faraday’s law

▽× E = −
∂B

∂t



The generalized Ohm’s law

• Starting from the electron momentum equation:

ene(E + ue × B) = eneη j −▽ · Πe − me
∂(neue)

∂t

where Πe =
∫

femevvdv.

• Substitute in Ampere’s equation j = (niqiui − neeue) = 1
µ0

▽×B , the
above equation could be rewritten as

eneE = −ji×B+
1

µ0
(▽×B)×B+

ene

µ0
η (▽×B)−▽·Πe−me

∂(neue)

∂t

where ji = niqiui.



Electron inertia

• Taking the time derivative of Ampere’s equation

µ0

(

qi
∂niui

∂t
− e

∂neue

∂t

)

= ▽×
∂B

∂t
= −▽×▽×E

• The first term on the left hand side is obtained from the ion momentum
equation, thus the electron inertial term can be written as

me
∂(neue)

∂t
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me

mi

qi

e
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qini(E + ui × B) −▽ · Πi − qini
η

µ0
▽×B
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+
me

µ0e
▽×▽×E.



Generalized Ohm’s law

• Using quasi-neutrality ni = ne, the electron density and flow can be calcu-
lated directly from particle ions

eni(1 +
me

mi

q2
i

e2
)E +

me

µ0e
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= −(1 +
me

mi

qi

e
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1
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+η
eni
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me

mi

qi

e
▽ · Πi,

• In general, we need an electron model to calculate Πe. Here we assume the
electrons are isothermal and Πe reduces to

Pe = neTe = niTe

Future plans include drift-kinetic and gyro-kinetic electron models.



The second-order semi-implicit δf algorithm

• In order to eliminate the fast compressional wave, we have implemented a
second-order accurate semi-implicit method.

• For particle ions, the usual δf method is employed. Given a distribution
function f = f0 + δf , if a weight of wj = δf

f |x=xj,v=vj
is assigned to each

particle, we could then calculate the field quantities by weight δf to the
grids. According to Vlasov equation, the particle weight evolves as

d

dt
wj = −

d ln f0

dt
|x=xj,v=vj

Yang Chen, Scott E. Parker, Phys. Plasmas 16, 052305 (2009)



Second order semi-implicit scheme

• The velocity, length and time are normalized to c2
s = Te/mi, ρs = mics/eB0 and Ω−1

ci =

mi/eB0. βe = µ0n0Te/B
2
0 is defined upon the uniform background plasma.

• The equations of motion are

xn+1 − xn

∆t
= (1 − θ) vn + θ vn+1,

vn+1 − vn

∆t
= (1 − θ) an + θ an+1,

wn+1 − wn

∆t
= −(1 − θ) (vn · ▽ + an · ∂v) ln f0(x

n, vn)

−θ (vn+1 · ▽ + an+1 · ∂v) ln f0(x
n+1, vn+1),

where a = qi
mi

(E + v × B).

• Generalized Ohm’s law:
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i )E
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+
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i +
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mi
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Ion current and nonlinear terms

• The first term on the right hand side of the generalized Ohm’s law involves
the future ion current density
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mi

q2
i

e2
)En+1 + · · · = −(1 +
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qi

e
) δjn+1

i × Bn+1 + · · ·

we approximate δjn+1
i as follows

δjn+1
i = qi

∑

j

wn+1
j vn+1

j

= δj⋆
i + qi θ ∆t

∑

j

qi

Ti
En+1(xn+1

j ) · vn+1
j vn+1

j

≃ δj⋆
i + θ ∆t

q2
i

mi
En+1 ≡ J ′

i.

• For accuracy issues, we iterate on the differences between δjn+1
i and J ′

i.

• For every ky and kz mode, the generalized Ohm’s law is solved in x direc-
tion using finite difference. The equilibrium part is solved by direct matrix
inversion. And the nonlinear terms are treated iteratively.



Benchmarks

• We have carefully benchmarked the code with the Alfven waves, whistler
waves and ion acoustic waves with linear Landau damping. We have also
investigated the small ∆′ tearing mode and the simulation is consistent with
the MHD studies. The results are summarised in the paper submitted to
JCP.



Equilibrium and Boundary conditions

• Zero-order magnetic field B0(x) = By0 tanh(x
a) ŷ + BG ẑ

• Perfect conducting wall boundary condition is employed in x while periodic
boundary conditions in y and z direction.

Ey,z|x=±lx/2 = 0

δBx|x=±lx/2 = 0

• Particles are reflected at x = ±lx/2.



Island evolution I
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Island evolution II
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Island width with different aspect ratio

• Island growth with various aspect ratio.
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Energy conservation

• Take the second moment of the Vlasov equation, we have

∂

∂t
(KE) =

∫

E · ji d3x.

• With the generalized Ohm’s law, the rhs is rewritten as
∫

E · ji d3x = −
1

2µ0

∂

∂t

∫
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1

B2

[
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▽×B − ji) · B

]

B · E d3x

−
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ηen0
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+me

∫
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Magnetic energy and Ion kinetic energy

• The kinetic energy and magnetic energy change in the simulation
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Ion heating in the island region

• The distribution function clearly shows that ions are heated.
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Average kinetic energy of ions in the island region

• Looking into the island region, the average kinetic energy of ions increases
about 13%.
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Summary

1. We have implemented a second-order accurate implicit algorithm with Lorentz
force ions and isothermal fluid electrons which is

• Quasi-neutral and fully electromagnetic.

• Suitable for MHD scale plasmas.

2. Secondary islands in the strong tearing mode.

• For large ∆′ tearing mode, we have observed multiple islands forming
and coalescence.

• Using particle ion diagnostics, we have shown that ions are heated in the
island region and compared with the magnetic energy change.

3. Future work

• Further detailed diagnostics about the energy conversion in the process.

• Use tracer particles to study the particle behaviors (e. g. dissipation)
around the X and O points of the islands.


