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How can one model neoclassical tearing modes? 

Introduction 3 



Neoclassical tearing mode modeling 
4 

 NTM stability place a severe limit on maximum β 

 Most common cause of disruptions on JET1 

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs 
 Especially important for ITER operation, in which very 

few disruptions can be tolerated2 

 NTMs incorporate a lot of physics  
 Cause:  Neoclassical kinetic theory (bootstrap current) 

 Effect:  MHD destabilization (island growth) 

 Requires a hybrid model 

 1 P.C. de Vries, et al., Nucl. Fusion 51, 053018 (2011) 
2 T.C. Hender, et al., Nucl. Fusion 47, S128-S202 (2007) 



Framework for hybrid solver 
5 

 Use existing MHD time-evolution code (e.g., M3D-C1, 
NIMROD) 

 Desirable traits for neoclassical drift–kinetic equation 
(DKE) solver 
 Three-dimensional toroidal geometry 

 Study nonaxisymmetric geometries with magnetic islands 

 Full Fokker-Planck-Landau collision operator 
 Use of model collision operators can lead to errors of 5%-10%3 

 Continuum model 
 Good convergence properties, especially for long times 
 Straight-forward coupling to MHD solvers 
 Potentially more computationally efficient than PIC 

 No code currently exists that has all of these traits 

3 E.A. Belli and J. Candy, Plasma Phys. Control. Fusion 54, 015015 (2012) 



Ramos Form of DKE 
6 

 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides analytic 
framework for a neoclassical solver appropriate for core plasma 
instability simulations 

 Velocity taken in frame of each species’ macroscopic flow 

 Two expansion parameters for high-temperature fusion plasmas                    

 Maintain equations to lowest order exhibiting collisional dynamics 

 Electron DKE is maintained to order           , or  

 Ion DKE should be maintained to order 

 For now, ion DKE is maintained to order         , with  

 This is conventional neoclassical banana dynamics for both species 

 DKE evolves difference between  the full distribution function and a 
shifting Maxwellian (like delta-f) 



NIES solves for the non-adiabatic distribution 
function to zeroth-order in collisionality in a 
stationary, axisymmetric toroidal plasma 

 

Neoclassical Ion-Electron Solver 7 



NIES overview 
8 

 Work in 4D phase space w/ flux coordinates: 
 Distribution function: 
 Non-adiabatic piece: 

        is independent of θ 
 Dimensionless magnetic moment: 

 DKE reduced to a solvability condition 
 
 
 Ion source contains ion temperature gradient drive 
 Electron source contains ohmic drive, interaction with ion 

flow, and pressure and electron temperature gradient 
bootstrap drive 

 Need only be solved for passing particles 



NIES computational methods 
9 

 Expansions 
 Expand Rosenbluth Potentials in Legendre polynomials in  

                  , Fourier series in          , and piecewise linear finite 
elements in  

 Then expand       in piecewise linear finite elements in     and 

 Solvability condition and the Rosenbluth Potential 
Poisson equations solved simultaneously on one flux 
surface at a time 
 Inner products taken with finite elements, Legendre 

polynomials, and Fourier modes 

 Matrix equation is block tridiagonal in   , allowing for efficient 
solution method 

 Simple moment of       gives ohmic and bootstrap current 

 

cos



Benchmarks 
10 

 Sauter analytic fits:  O. Sauter, et al., Contrib. Plasma Phys. 34, 2/3, pp 169-174 (1994). 

 Callen analytic fomulae:  J.D. Callen, et al., Phys. Plasmas 17, 056113 (2010). 

 Our results:  B.C. Lyons, S.C. Jardin, and J.J. Ramos, Phys. Plasmas 19, 082515 (2012). 



Axisymmetric case 

Hybrid Simulations 11 



Overview of next step 
12 

 Retain axisymmetric geometry for now 

 Want to solve the full Ramos DKE without further 
expansions in collisionality 

 Extends result to first-order in collisionality 

 Allows solution to vary poloidally 

 Will couple directly to reduced MHD equations 



Reduced MHD equations 
13 

 Use the two field representation 

 

 Combining Faraday’s Law and Ohm’s law gives 
 

 

 Collisional friction force:   

 Momentum equation gives 

 
 

Note that: 



Reduced DKE 
14 

 To start, assume: 

 Flat and stationary temperature & density profiles 

 Zero pressure anisotropy 

 Large aspect ratio 

 Equal ion and electron temperatures 

 DKE simplifies to 



Timescales 

 Difficult to consider DKE time dependently 
 In DKE, collision time 10-103  longer than convective time 
 MHD resistive time 106-108 longer than collision time 

 Reasonable to assume that distribution function evolves 
to steady state on the resistive timescale 

15 



Proposed solution iteration 
16 

Solve stationary 
electron DKE to get 

distribution function 
for given equilibrium 

Take moments to get 
necessary closures 
for MHD equations  

(e.g., friction force) 

Evolve MHD 
equations to get 
new equilibrium 

(use M3D-C1) 



Proposed expansions in DKE 
17 

 Velocity 
 Cubic B-spline finite elements for 

 Pitch angle 
      no longer a good expansion variable 

 Use                      instead 
 Legendre polynomials 

 Finite elements 

 Configuration Space 
            -  only need to expand poloidal angle 
 Fourier modes 

 Finite elements 

            -  finite elements 



Proposed Solution Method 
18 

 Cubic B-spline finite elements create block 
septadiagonal matrix in 

 

 

 

 

 

 

 Each block contains information on     and θ derivatives 

 Solve as a sparse banded matrix using ScaLAPACK 



Test problem 
19 

 Diffusion of current into a toroidal plasma due to a 
loop voltage at its edge 

 Current evolves self-consistently with equilibrium 

 Should observe neoclassical conductivity reduction 

 Trapped particles carry no net current 

 Can benchmark to theoretical and numerical results 

 Code currently in production 



Extensions to axisymmetric code 
20 

 Eventually want to solve time-independent, 
axisymmetric form of the full Ramos DKE 

 Allow separate ion and electron temperatures 

 Relax constraints on density and temperature profiles 

 Relax large aspect ratio equilibrium assumption 

 Will have to solve separate, but similar, ion DKE 

 Will allow for simulations of the inductive 
formation of the bootstrap current 

 Use full six-field MHD model with M3D-C1 to self-
consistently evolve pressure as well 

 



Conclusion 21 



Summary 
22 

 The operation of ITER and other future MCF 
experiments requires predictive capabilities for 
core plasma instabilities (e.g., Sawtooths, NTMs) 

 To date, no neoclassical code exists that is well-
suited for such simulations 

 We are creating such a code based on the Ramos 
drift-kinetic formulation 

 Axisymmetric hybrid code currently in development 

 Work on nonaxisymmetric code should be underway 
by next year’s APS 

 See my poster (#112 Tuesday afternoon) for more info 

 



Additional Slides 23 



Neoclassical tearing mode (NTMs) 
24 

 Density, temperature, pressure, etc. 
tend to equilibrate across an island 
width 

 Difference in current at O-point and 
X-point can drive island growth 
 Without these gradients, there can be 

no bootstrap current within the island 
 Bootstrap current at the X-point can 

drive island growth 

 Large islands allow hot, dense 
plasma near core to be transported 
outward, reducing confinement 

 Modifications to magnetic topology 
can result in macroscopic instability 
and disruption 

Images taken from The 

Theory of Toroidally Confined 

Plasmas by R. White, 2006 

 



Neoclassical code characteristics 
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Full Collision 
Operator 

Continuum 

3D 

DKES 

NEO 
CQLP NCLASS 

XGC0* 

*Only full collision 
operator for ions 

GTC-Neo* 

? 



Ramos DKE 
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with full Fokker-Planck-Landau collision operator 



Nonaxisymmetric hybrid simulations 
27 

 Toroidal angle could be expanded in Fourier modes 
or finite elements 

 No concentrically-nested flux surfaces 

 Flux surfaces still exist in most of torus, however, both 
inside and outside islands 

 May be possible to parameterize field lines or surfaces 
with something like 

 May require            representation of poloidal plane 

 



Possible nonaxisymmetric test case 
28 

 Begin with a stable equilibrium with a seed 
magnetic island 

 Evolve equilibrium with neoclassical effects due to 
nonaxisymmetric code 

 Explore how bootstrap current can destabilize the 
seed island, leading to neoclassical tearing mode 


