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• Pedestal grows until ELM hits
• RMP coils can inhibit pedestal growth to prevent ELMs
• What are possible physics mechanisms that inhibit growth?

– Vacuum Islands Picture: 
3D Fields Overlapping Islands Stochastic Transport

– Plasma Islands Picture:
3D Fields Flow Screening Strategically Placed Isolated Islands 

– Magnetic Flutter Picture:
3D Fields Flow Screening Isolated Islands 

Radial Field Line Wiggles Between Islands 
• In this talk, magnetic flutter induced transport is shown to be of 

an experimentally (DIII-D) relevant level

Motivation: Need to Understand Physics of ELM 
Suppression to Be Able to Project to Future Devices
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• Experimental Observations
• Vacuum vs Plasma Response
• Magnetic Flutter Equations
• Comparison of Model to Experiment

– 126006
– 126440

• q95 Scan Using Model Equilibria
• Summary

Outline
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• I-coils are single turn
• For ELM suppression, the I-coils are usually used singly or in 

odd parity

DIII-D has both internal and external magnetic field 
coils
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3D Fields from I-Coils Are Used for ELM Suppression

BT =2.1 T
IP =1.6 
MA

I-Coil (kA)

Dα

q95

126440 126443
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RMP Fields Have Complicated Effects on the Kinetic 
Profiles

Steeper in pedestal
Flatter at top

Density pumpout

126440 126443
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• M3D-C1 (Two-Fluid MHD) calculates linear perturbations 
• TRIP-3D calculates Poincaré plots
• Shot 126006, Ion Rotation is Carbon Rotation

Plasma Response Reduces Region of 3D Fields-Induced 
Magnetic Stochasticity; Flutter Remains Between Islands
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Magnetic Flutter Model has Kinetic and Geometric 
Contributions; Rational Surfaces are Important
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126006: δBρm/n Has Flow Screening at Most Rational 
Surfaces

δBρm/n

Flow-Screening
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126006: Radially Averaged χ Effective Matches 
Experimental Diffusivity Reasonably Well

χ
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126006: For Judicious Boundary Condition, Te is Well 
Matched Across the Top of the Pedestal

Flattening at 
Rational Surfaces



1212
S.P. Smith/ITPA Pedestal & Edge San Diego/Oct 2012

126440: : δBρm/n Has Flow Screening As Well As 
Amplification

Amplification

Flow-Screening

δBρm/n
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126440: Radially Averagedχ Effective Matches 
Experimental Diffusivity Reasonably Well

χ
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126440: For χEffective, with Judicious Boundary Condition, 
Te is Well Matched Across the Top of the Pedestal
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q profile varied by changing BT0 ±2%, ±5%;
3.5<q95<3.9
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Radially Averaged Diffusivity at Top of Pedestal Might 
Show Peak When q95 is in Suppression Window

Peaking at top of pedestal

χ



1717
S.P. Smith/ITPA Pedestal & Edge San Diego/Oct 2012

Diffusivity Differences Have Only Slight Effects on the 
Te Profile at the Top of the Pedestal
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• The Magnetic Flutter Induced Plasma Transport Model has 
been evaluated for 2 DIII-D discharges where ELMs were 
suppressed.
– The predicted radially averaged diffusivities are of an 

experimentally relevant magnitude (~m2/s).
– The predicted temperature profiles have sub-measurement 

flattening on rational surfaces.
– The overall predicted temperature profile shapes generally 

match experiment.
• The Model has been used to evaluate a q95 scan to search for 

a possible explanation for the q95 window seen in DIII-D
– Results here are preliminary.
– The radially averaged diffusivities hint at larger diffusivities around 

the pedestal top for q95 in the suppression window.

Summary
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• Jim Callen – Theory 
• Peter Raum – NUF (Undergraduate) Student from Virginia Tech
• Orso Meneghini – OMFIT (One Modeling Framework for 

Integrated Tasks)
• Nate Ferraro – M3D-C1
• Dmitri Orlov – TRIP-3D
• Saskia Mordjick, Rick Moyer, Todd Evans – RMP ELM 

Suppression Data 
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