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Drift-tearing Analysis and
Benchmarking

Jacob King
Tech-X Corporation

Principal results:

* New drift-tearing dispersion relation

 NIMROD results agree at moderate g-
values



New dispersion relation has 2-fl Ohm’s law and
diamagnetic heat flows [~b x grad(T)].

* Formulation uses un-reduced extended-MHD equations.
* Electron and ion temperatures evolve separately.

* The parameter regime has large ion skin-depth and moderate
f, i.e. PR4d in the Ahedo-Ramos (AR) notation.
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* T,is a generalization of Tfrom AR to include diamagnetic heat
flux, grad-p,, and electron-advection effects.

— Itis most significant at small S-values.



Computations use parameters of previous comparison
with AH, incorporating spatially varying p,.

Moderate S-value (0.1) makes
1o/osmall, and in this drift
regime (PR3d), single-T
computations and analytics
agree.

This comparison at small g-
value (0.0016) also has single-
T modeling with grad-p,
effects in Ohm'’s law.
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The new analytical prediction for low-f appears similar
to the single-T result, and two-T modeling requires the
diamagnetic heat flows.
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Increasing grad-p, @ . A’is constant.

« Two-temperature analytics predicts that the stabilizing effect at large
grad-p, is absent without diamagnetic heat flow.

 NIMROD two-T computations in this regime have proven to be
challenging (so far).



Update on ITG Study

Dalton Schnack
University of Wisconsin-Madison

in collaboration with

Dan Barnes, Jianhua Cheng, Chris Hegna, Eric
Held, Jake King, Scott Kruger, Scott Parker, Carl
Sovinec, and Ping Zhu



lon Temperature Gradient (ITG)
Instability

ITG requires 2-fluid/FLR effects for instability
— g-mode is stabilized by 2-fluid/FLR
— Good validation test for 2-fluid/FLR computations

Parallel ion sound wave driven unstable in presence of ion
temperature gradient

— n,=dInT,/dx>nm

— Interaction between parallel sound wave and perpendicular drift wave

— Model problem in slab geometry

Direct comparison of linear growth rate and real frequency in fluid
regime (k,.,, p;<™ 0.25):

— Local fluid theory (dipersion relation)

— Local kinetic theory (dispersion relation)

— Global NIMROD linear computations

Comparison between global fluid and kinetic models underway



Computations presented here have their largest
n and T gradients near center of domain.

* Profiles are hyperbolic tangents to avoid
ooundary effects.

* Location of largest local-theory growth-rate
occurs at x-values just below x=0.



ITG Growth Rate and Real Frequency

Growth Rate vs. k., p;
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Summary/Caveats

Direct comparison between:

— Local fluid theory

— Local kinetic theory

— Global NIMROD linear computations
Reasonably good agreement

— Validation of NIMROD 2-fluid/FLR model (Braginskii) and algorithm?
Caveats: computational signal-analysis diagnostic finds y and w, to be
weak functions of x

— Presence of other mode activity?

— Numerical instability with k, dependence appears at late times
Major questions:

— Why is the real frequency negative?
» Disagrees with local theory (fluid and kinetic)

— Why are y and w, functions of x?
* Impossible for a global eigenvalue

— Why does the eigenfunction depend on the frame of reference (E,)?
Comparison with GK computation (CU group) will use a smaller domain.



Dynamo and Momentum Transport

Josh Sauppe and Carl Sovinec
Univ. of Wisconsin-Madison

Principal results:

« Background flow breaks the symmetry of
relaxation

« Background flow affects both Hall and
MHD dynamos



Background flow breaks the symmetry of
relaxation relative to positive and negative current.

Results with negative current, Jo -Bg <0, exhibit approximately twice as
much field-reversal during the first relaxation event.

Somewhat more nonlinear coupling occurs, as evident from the larger
spectral width, N E(Enmn)z/gnwfn , where W, , is the magnetic
fluctuation energy in the (m=1,n) component.
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Background flow alters Hall and MHD dynamo effects.

At reversal the sum is similar for the two current orientations, but the
contributions oppose each other with positive current.
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Current Drive and Model Validation
for HIT-SI

Cihan Akcay, Charlson Kim, and Tom

Jarboe
Univ. of Washington / Plasma Science and
Innovation Center

Principal results:

« Two-fluid computations reproduce current
rectification/multiplication

« Synthetic diagnostics show very substantial
agreement with laboratory measurements.



SIHI is implemented as a set of normal magnetic field
B, and tangential electric field E; boundary conditions
imposed at the annular boundaries

A MATLAB GS solver is used to obtain the functional form for B, and
E:, which are hard-coded in NIMROD in B_norm and E_tang.

Cihan Akcay (University of Washington) Extended MHD Simulations of HIT-SI APS 2012 6/24




Highlight

@ Two-fluid MHD (2fl MHD)
- shows greater current amplification ! and faster current rise

lin'
times than rMHD. ’
- reproduces ’,’I‘—zjf demonstrated by HIT-Sl at f;,;; = 14.5 kHz.
- shows good agreement with the experimental data:
validation.

- figure compares time-averaged magnetic profiles.
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Cihan Akcay (University of Washington) Extended MHD Simulations of HIT-SI APS 2012



Comparison of IMP time traces at various radial

locations with NIMROD synthetic probes.
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Cihan Akcay (University of Washington) Extended MHD Simulations of HIT-SI APS 2012 16 /24



Computations for DC Injected
Simulations

Eric Howell and Carl Sovinec
Univ. of Wisconsin-Madison

Principal nonlinear result:

» Two-fluid computation from partially
saturated MHD computation continues flux
amplification without DC power.



2-fluid effects improve the performance for the partial

formation case early into the decay.

@ The poloidal flux amplification
that occurs early into the decay -

7.0E-2
results in 6% more flux. 50 I
@ A rise in peak temperature is %45 /\ 6.6E-2
observed earlier in time. g —Fluxparial || 6.4E-2
£ - — Te partial
@ No difference is observed SEPTR A miiieial
between the MHD and 2-fluid e =y TR
simulations early in the decay Time ()
phase for the fully saturated
case.

E.C. Howell, C.R. Sovinec Extended MHD simulations of spheromaks

Poloidal Flux(wh)




NIMROD-related presentations, APS 2012
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GP8.00124, Edge plasma response to resonant magnetic perturbation in extended MHD model, Zhu

JP8.00105, Simulations of validation platform experiments by the PSI-Center, Nelson

JP8.00106, NIMROD sims. of the stabilization of the FRC tilt instability with energetic ion beams, Milroy

JP8.00107, Implementing a reacting plasma-neutral model in the NIMROD finite element code, Norgaard

JP8.00109, Implementation of higher-order moment equations in NIMROD, Ji

9. JP8.00124, Eigenmode tests of improved basis functions for NIMROD, Sovinec

10.JP8.00147, Two-fluid modeling of current and flow relaxation in the reversed-field pinch, Sauppe

11. N13.00003, Self-consistent simulations of nonlinear MHD and profile evolution in stellarator configurations, Schlutt*

12.NP8.00069, Simulations of current-filament dynamics and relaxation in the Pegasus ST, O’Bryan

13.NP8.00095, Generalized resistive wall boundary conditions for cylindrical and toroidal geometry in NIMROD,
Montgomery

14.NP8.00096, Extended-MHD studies of flow-profile effects on edge harmonic oscillations in QH-mode discharges,
King

15.NP8.00107, On the stability of a particle driven Alfven mode localized within the minimum q in reversed shear,
Brennan

16.P12.00003, Impurity mixing, radiation asymmetry, and runaway electron confinement in MGl simulation of DIII-D and
ITER, lzzo*

17.PP8.00025, Flux-surface closure during resistive-MHD simulations of coaxial helicity injection (CHI) in NSTX, Hooper

18.PP8.00048, FRC edge physics using NIMROD, Necas

19.PP8.00052, Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC, Velas

20.PP8.00056, Overview of HIT-SI progress and results, Victor

21.PP8.00057, Measurements of ion temperature and velocity in HIT-SI with comparison to NIMROD calculations,
development of piezoelectric valve, Hossack

22.PP8.00059, Extended MHD NIMROD simulations of HIT-SI plasmas, Akcay

23.PP8.00063, Extended MHD simulations of spheromaks, Howell

24.TP8.00055, ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC
simulations, Jenkins

25.UP8.00057, Roll-back planning for a compact fusion system, Woodruff
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