
ITER disruptions and wall force 

H. Strauss, HRS Fusion 
J. Breslau, S. Jardin, PPPL 

R. Paccagnella, Istituto Gas Ionizzati, CNR 
L. Sugiyama, MIT 

 
CEMM - APS Meeting 

28 October 2012 



Outline 

 
•  VDE and disruption 

–  Unmitigated disruptions, caused by VDE, (2,1) mode 
–  Mitigated disruptions (or disruptions not caused by VDE) 

•  Theory of sideways force - (1,0), (1,1) and (2,1) modes
   

•  3D halo current 
–  Toroidal variation of toroidal current 
–  Simulations, data, theory 

•  Future plan: ITER vessel force 
•  Summary 



AVDE disruptions 

•  VDE  
–  Timescale: τwall  
–  As plasma approaches wall, flux scrapes off and (2,1) mode is 

destabilized 

•  TQ 
–  Timescale: independent of S, Alfven (?) 
–  fast reconnection, stochastic magnetic field 
–  T drops to about 30 eV 

•  CQ 
–  Timescale: τresistive (30eV) 
–  Halo current as plasma hits wall 
–  Large wall force including sideways force Fx  



Unmitigated disruption:  VDE scrapes off magnetic 
flux, lowers q at last closed flux surface  

When separatrix flux surface 
penetrates wall, last closed flux 
surface has q=2. This destabilizes 
external kink or RWM 

 initiallyψ  during VDEψ

VDE does not have to move 
plasma very far Manickam et al. 2011 



Scrape off destabilizes (2,1) mode  

•  Growth rate increases with yaxis , the vertical displacement of 
the magnetic axis, which lowers edge q 

•  Mode structure is (m,n) = (2,1) 
•  Mode is resistively unstable, approaches ideal marginal stability 
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(2,1) growth rate scales as S-1/3 

•  As  yaxis increases, growth rate tends to S-1/3 scaling 
•  Approaches marginal ideal instability 
•  The S value near q=2  is what matters 
•  In graph S on axis is plotted 
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Sideways wall force 

•  Wall force is calculated from the jump in magnetic field across 
thin resistive shell 

( )ˆ
current in wall is given by wall vac plas

nJ B B
δ

= × −

sideways wall force is  Fx = δ ∫ dϕ ∫ dlR Jwall × Bwal( )i x̂
where x̂ = R̂cosϕ ≈ n̂cosθ cosφ

•   Indicates that (1,1) perturbations required for sideways force 
•   also (2,1) beating against (1,0) VDE 

 is wall thicknessδ

resistive wall penetration time wall
wall

δ
τ

η
:



Wall force depends on γτwall 

The value of γτw for which Fx peaks depends on initial conditions, as will be 
shown analytically 

Fx  is large for γτ w ≈ γ / γVDE ≈1. 
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Mitigated disruptions 
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•  MGI (Izzo et al. 2008) 
•  Radiation cools plasma 

for q > 2 
•  Profiles become unstable 

to (2,1) and (1,1) modes 
•  In simulations, profiles 

were modified to set 
current = 0 for q > 2 

•  Current was increased for 
q<2 to keep total current 
constant 

•  VDE was evolved to different displacements of the magnetic axis in 
2D before allowing 3D mode evolution 

•  Sideways force Fx increased linearly with magnetic axis displacement 
•  γτ> 10 



Theory of wall force produced by (2,1) modes 

•  Previous theory explained sideways force Fx produced by (1,1) 
mode (Zakharov 2008, Strauss et al. 2010) 

•  MGI disruption simulations show that Fx is linear in VDE 
displacement ξVDE 

•   Fx is linear in (1,1) amplitude and bilinear in the (2,1) and (1,0) 
(VDE) amplitude. Explains  MGI Fx dependence on VDE 
amplitude, as well as peaking of Fx when γτ~1  

•  Based on Strauss et al. PoP 2010 model: circular cross section, 
constant current density. Plasma radius a, wall radius b 

sideways force is Fx =
1

(2π )2 dφ dθ fr cosθ cosφ∫

where  fr ∝
bm

rm
ξm1 sin(mθ −φ)



Theory of (2,1) wall force 

fr (r −ξVDE sinθ ) = fr (r)−
∂fr
∂r
ξVDE sinθ

where cm =
mBθ

2

Bφ
2

γm1τ (m− q)
m(b / a)m + (b / a)m − (a / b)m"# $%γm1τ

The VDE displaces the force; expand 
in a Taylor series  

The force depends on (1,1) and (2,1)  
times (1,0)  amplitude    

Fx = c1
ξ11
a
+ c2

ξVDE
b

ξ21
a

Fx is normalized as in Strauss 2010 
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Peaking of Fx(γτ) 

The peaking of the force as a function of γτ can be explained as a 
competition between the (2,1) mode and VDE (1,0) mode to reach maximum 
amplitude. Let the amplitudes of the 2,1 and 1,0 modes have the form 

ξ21 / a = sech(γt −α21) ξ10 / b = sech(t / τ −α10 )
The model assumes the modes grow exponentially and then decay. 
The decay of the VDE models moving into the wall. The α terms are 
the initial amplitudes at t=0.  The force is maximum when the time  
derivative of ξ21ξ10 is zero.  

Fx ∝ sech
2 γτα10 −α21

γτ +1
#

$
%

&

'
(

peak of Fx (γτ ) occurs when γτ = α21

α10

≥1
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in scrape off case,  α10 ≤1,  α21 >>1



3D halo current 

•  In JET, the toroidal current varied as a function of toroidal angle 
during disruptions 

•  Zakharov PoP 2008, Gerasimov et  al, JET 2009 

Zakharov: caused by Hiro current 
 

ΔIϕ
Iϕ0

≈ 0.08



 
dIφ

plasma

dϕ
= −ihalo−3D

2D and 3D halo current 

•  Halo current is poloidal current that flows into the wall in a 
VDE or disruption 
–  Net conventional (2D)  normal current density vanishes 

when integrated poloidally 
 

ihalo3D = Jn∫ Rdl

ihalo =
1
2
∫ | Jn | Rdl

•   3D halo current density:  

∇• J = 0  ⇒   

2D halo current density 

d
dφ

Iφ
plasma + Iφ

wall( ) = 0“Hiro current” 



Halo currents and TPFs 

TPF =
ihalo−max
< ihalo >

,   TPF3D =
ihalo3D−max
< ihalo >

 where < ihalo >=
1

2π
∫ dϕihalo

Define Toroidal Peaking Factors (TPF) for halo current and 3D halo current 

ΔIϕ
Iϕ0

=TPF3D ×
HF
2π

HF = 2π < ihalo >
Iφ

Halo fraction: 

ΔIϕ / Iϕ0 ≈ 0.02 TPF3D /TPF ≈ 0.5In simulation,  



Theory of toroidal current variation 

Same model as before from Strauss et al 2010 
VDE displacement of (1,1) mode gives toroidal current variation  

ΔIφ
Iφ

=
(γτ + 2)(1− q0 )
[1− (a / b)2 ]γτ + 2

a
b
#

$
%
&

'
(
3
ξ11
a
ξVDE
b

example: γτ >>1,  b / a = 2,  q0 = 0.8,  ξ11 = a,  ξVDE = b
ΔIφ
Iφ

= 0.03

Consistent with JET, simulations, and ITER database 



Toroidal Current variation – ITER database  

  TPF ×HF < 0.75

ITER database: X’s are M3D results 

ΔIϕ
Iϕ0

< 0.12
TPF3D
TPF

ΔIϕ
Iϕ0

=TPF3D ×
HF
2π



ITER vessel forces 

•  Use GRIN to calculate Green’s 
functions for vacuum B fields  

•  Resistive walls with different wall 
times 

–  First wall 
–  Blanket modules 
–  Vacuum vessel 

•  Calculate wall forces  
•  Benchmark with DINA, TSC 



Coupling to 3D EM code 

•  Normal current given to CAFÉ 
3D EM code 

•  Calculate vessel force 
•  Loose coupling – no feedback 

as with GRIN 
•  Should also provide toroidal 

current to calculate eddy 
current in vessel 



Summary 

•  Calculated sideways force Fx in ITER disruptions 
–  Disruption caused by VDE  

•   scrapes off and cools plasma for q > 2 
•  (2,1) mode more important than (1,1) 

–   MGI induced disruption 
•  Fx   is offset linear in the VDE amplitude 

•  Theoretical model  
–  can explain peaking of Fx   
–  offset linear scaling with VDE amplitude 

•  3D halo current gives toroidal variation of toroidal current 
–  Consistent with data and simulations 

•  Future plans: calculate Fx on blanket modules, coils 



Toroidal eddy current in wall 

•  Poloidal flux dissipation in 
resistive wall gives toroidal 
wall current 

•  Recently measured (LZ) 
•  Wall current opposite sign as 

plasma current 

∂ψ
∂t

= −ηwallJφ
wall

ψ =ψ(r −ξVDE sinθ )

Jφ
wall

Iφ
plasma = −

ξVDE sinθ
2πδb3
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 Previous Simulations  
Strauss, Paccagnella, Breslau, PoP 17, 082505 (2010) 
Paccagnella, Strauss, Breslau, NF 49, 035003 (2009) 

•  Simulations with M3D MHD code with resistive wall boundary 
conditions 

•  Sideways wall force varied strongly with resistive wall penetration 
time, largest for mode growth time ~ wall penetration time  

•  S was relatively low (S = resistive time/Alfven time=105) 
–  Now S=106 

•  Τwall  was short 
–  Now Τwall ~ 103 - 104 


