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Neoclassical tearing mode modeling

0 NTM stability place a severe limit on maximum 3

0 Most common cause of disruptions on JET?

0 High-fidelity simulations required for prediction,
control, avoidance, and understanding of NTMs

Especially important for ITER operation, in which very
few disruptions can be tolerated?

0 NTMs incorporate a lot of physics
Cause: Neoclassical kinetic theory (bootstrap current)
Effect: MHD destabilization (island growth)
Requires a hybrid model

L P.C. de Vries, et al., Nucl. Fusion 51, 053018 (2011)
2T.C. Hender, et al., Nucl. Fusion 47, S128-5202 (2007)



Framework for hybrid solver

o Use existing MHD time-evolution code (e.g., M3D-C?,
NIMROD)

0 Desirable traits for neoclassical drift—kinetic equation
(DKE) solver

Three-dimensional toroidal geometry

m Study nonaxisymmetric geometries with magnetic islands

Full Fokker-Planck-Landau collision operator

m Use of model collision operators can lead to errors of 5%-10%?

Continuum model

m Good convergence properties, especially for long times
m Straight-forward coupling to MHD solvers

m Potentially more computationally efficient than PIC

3 E.A. Belli and J. Candy, Plasma Phys. Control. Fusion 54, 015015 (2012)



Ramos Form of DKE

0 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides
analytic framework for a neoclassical solver
appropriate for core plasma instability simulations

0 DKE evolves fvus, difference between full distribution
function and shifting Maxwellian (similar to delta-f)

0 Small parameters for high-temperature fusion plasmas
o~ pi/L <1 V>I<"\JL//\Inpr(S
O Important properties:

Maintained to collisional inverse timescale of O (6°vip./L)
m Conventional neoclassical banana regime for electrons
Velocity w referenced to each species’ macroscopic flow

Perturbed distribution function carries no density, parallel
momentum, or kinetic energy




Overview of new code
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0 NIES code* successfully solved axisymmetric Ramos

DKEs to zeroth order in collisionality
o We'll retain axisymmetric geometry for now
0 Want to solve the full Ramos DKE without further
expansions in collisionality
Extends result to first-order in collisionality

Allows solution to vary poloidally
Solves for particles’ distribution functions in both
trapped and passing regions

o Will couple directly to MHD equations

3 B.C Lyons, S.C. Jardin and J.J. Ramos, Phys. Plasma 19, 082515 (2012)



Extended MHD equations
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0 Besides Maxwell’s and continuity eqgs., we have:

o Ohm’s Law

BB = e (B V= =) (b= T3)]}

1 Momentum evolution
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1 Pressure evolution
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Required Moments for Closure
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O Pressure Anisotropy
Ps|| — PsL = %ms /dgw (3wﬁ - wg) JNArs
o Parallel Heat Flux
qs|| = 1ms/d3w wwy s
o Collisional Friction Force

Feoll = m, / d*w w Ce; [fare + [Nates fari]

o Collisional Heat Sources

Gcoll Gcoll 1 ~ 3. Fcoll 2VenMme
en (2m)1/2m,

o All of these moments are given by the solution to appropriate DKEs

(Te - T@)

o We'll only consider the electron DKE here



Electron drift-kinetic equation
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0 Assumes equal ion & electron temperatures

0 Axisymmetric 4D phase space
o v denotes a flux surface, @ is the poloidal angle
o w is the total velocity, y = cos x is cosine of the pitch angle

o Density, temperatures, and pressures are flux functions



Electron Collision Operator
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0 Fokker-Planck-Landau form used
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0 Poisson equations for the Rosenbluth potentials
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Time advancement of Electron DKE
EN e
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o Implicit, homogeneous convective and collision operator terms

o Explicit, homogeneous moment terms
o No stability constraints expected since these are integrals over the solution
o Predictor-corrector option available, but no substantial effect observed

o Inhomogeneous drive terms



Expansions in DKE
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0 Velocity
Finite elements for w
m Hermite cubics
m Cubic B-splines

0 Pitch angle
Legendre polynomialsin y = cos x
May try finite elements soon as well

0 Configuration Space
Fourier modes in 6
Y is just a parameter (each flux surface treated locally)
May try finite elementsin @ orin (R, Z)



DKE Solution Method

_ 13 P
0 Poisson equations for Rosenbluth potentials solved
simultaneously with DKE at each time step

0 Galerkin method creates a block diagonal matrix in w

o Each block contains information on y and 8 derivatives

0 Two solver options implemented
o Sparse banded matrix using ScaLAPACK
o SuperlLU via PETSc



Timescales

s DL hLS

Machine| n (m™?) | T (keV) B (T) a (m) R (m)
LTX [3.15 x 10" 0.2 0.34 0.26 0.4
NSTX [9.04 x 10" 0.45 0.65 0.85
DIII-D |1.13 x 10%° 5 2.1 0.65 1.67
ITER |1.19 x 10*° 20 5.3 2.0 6.2

Machine | Taifven (8) | Te,conv (8) | Ti,conv () | Te,cott (8) | Tiscotr (8) |Tresistive (S)
LTX [3.0x 1077 (6.7 x107%(2.9 x 107°|5.8 x 1077 |2.5 x 107°| 3.3 x 107!
NSTX [82x1077]6.4x 107%2.7 x 107°%]2.0 x 107°|8.6 x 107°| 2.0 x 10"
DII-D [3.9x 1077 |5.6 x 107%|2.4 x 107%|1.6 x 1077 |6.7 x 10~*| 2.0 x 10?
ITER |59 x 1077 (1.0 x 1077 |4.5 x 107°%]1.1 x 107*]4.6 x 1072?| 1.3 x 10*

o Distribution function wi

within a resistive time

0 Must consider full time dependence as MHD code
time steps (10-100 Alfven times) can be less than the
electron collision time

| likely evolve to steady state




Hybrid iteration scheme
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Evolve DKE(s) to get
(possible steady state)
distribution function
for given equilibrium

Evolve MHD
equations to get new
equilibrium using
extended MHD time
evolution code

Take moments to get
necessary closures for
MHD equations

(e.g., friction force)




Status of code

o All terms have been implemented

0 Good convergence properties observed
See poster #89 on Tuesday afternoon if interested

O Initial benchmarks show good agreement with
Sauter analytic formulae for
Neoclassical conductivity
Pressure gradient drive coefficient



Calculating Sauter-like coefficients

0 When run to steady state, we can calculate the

neoclassical conductivity and bootstrap current
coefficients for an equilibrium

0 Must separate inhomogeneous source terms in DKE

0 Coefficients given by collisional friction force and
pressure anisotropy via parallel Ohm’s law

dP drl,
J * B — neo E . B I £: - £, L -
( ) = Oneo ) + ( 1 0 + L32n dw)



Benchmark with Sauter model (1)

L

Conductivity Benchmark

— Sauter - v, =0 limit
-=-=Sauter - v = 4x 107
Calculated - v = 4x 107

-==Sauter - v = 3x 10~

Sptz

e Calculated - v, = 3x 107

-==Sauter - v = 2x 107!

+ Calculated - v = 2x 107!
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Benchmark with Sauter model (2)
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Pressure Gradient Drive Benchmark

— Sauter - v, =0 limit
0.8- -=-=Sauter - v = 4x 107
Calculated - v = 4x 107
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.4; o Calculated - v, = 3x 107
0.4+ ,./‘ ---Sauter - v, = 2x 107!
o ,‘,e‘:,’ "
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1D MHD Test Solver

O From B = V¢ x V(4 IV(¢ %—]?—VXE E4+uxB=R ,We
o IV 1
can show that — =53 where @ = %/B-VCCZV,
di) (B-R)
L= —27— ,and Vp = —2x _
AP L "B-V0)

0 Assume a large aspect ratio, expansion equilibrium

0 Current controller applies loop voltage at edge

All knowledge of resistivity comes through the Ohm’s Law
For stability: R = R" + ngpe. (J*T —J7)

Initial studies do not include bootstrap currents



Evolution with Spitzer resistivity
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Current Waveform
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Evolution with DKE solver (no dP/d )
=

6 Current Waveform
x 10 i ]

BRI = (B R 4 (- p) b VB
gs.: Profiles at t =3'96Tskin

ga 18-

gz 1.6F ...""

o =
051 —Set Point _\‘ ﬁ o LLU (I) VL
| 1 L L 1 L — t Value 1 2 -
% 0.5 1 15 2 25 3 35 4 \ 2Rolcne
Utskin .

Rotational Transform Profiles

1 -
1.2¢
08k —Magn_itude of Loop Voltage
lk —Rotational Transform
N o6 Average Resistivity (n/m Sp 2
S —t= O, S
. :0_“:‘:5“" s Local Resistivity (n/n Sptz)
B 0.6 —t=0.311 Tin B
——t=0.583 Tstin 0.4
t=0.932 1t .
04r t=1361,
t=1.86rim 0.2
0.2F t=245tg,
T 0 I I I I I I I I I I
0 ‘ ‘ , ‘ T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b ororoa e 08 0607 0% 09 Normalized @



Future work

o0 Complete Sauter benchmark for T, gradient drive
0 Include bootstrap currents in MHD test solver

0 Compare to MHD evolution with Sauter model on
different timescales

o0 Implement separate, but similar, ion DKE solver for
jon temperature gradient drive
0 Couple to existing, more advanced MHD codes
TSC
M3D-C!
O Investigate alternate representations and
extensions to non-axisymmetric geometries



Summary

0 The operation of ITER and other future MCF experiments
requires predictive capabilities for core plasma
instabilities (e.g., Sawtooths, NTMs)

0 To date, no neoclassical code exists that is well-suited for
such simulations (work by E. Held excepted)

0 We are creating such a code based on the Ramos drift-
kinetic formulation

0 DKE solution benchmarked to Sauter in steady-state
Temperature gradient coefficient benchmarks coming soon

0 Initial hybrid simulations with neoclassical resistivity yield
good results

Hybrid simulations with bootstrap current coming soon
0 Poster #89 Tuesday afternoon
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Convergence of Conductivity

Conductivity at v, o =3-04e-02

L —Sauter (v, = 0)
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Convergence of P Gradient Drive
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Pressure Gradient Drive at v, =3.04¢-02
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Convergence of T, Gradient Drive
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Legendre & Fourier Convergence
N

Collisionality of v, =2.10x10°, At=0.1t_ . N =32
1

— Sauter (v,, =0)

0.9 * Sauter
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0 Low collisionality requires many Legendre polynomials (L)
and Fourier modes (M) to converge

0 Likely due to steep trapped-passing boundary layer
0 May necessitate move to finite element representations



