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Neoclassical tearing mode modeling
3

 NTM stability place a severe limit on maximum β

 Most common cause of disruptions on JET1

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs
 Especially important for ITER operation, in which very 

few disruptions can be tolerated2

 NTMs incorporate a lot of physics 
 Cause:  Neoclassical kinetic theory (bootstrap current)

 Effect:  MHD destabilization (island growth)

 Requires a hybrid model

1 P.C. de Vries, et al., Nucl. Fusion 51, 053018 (2011)
2 T.C. Hender, et al., Nucl. Fusion 47, S128-S202 (2007)



Framework for hybrid solver
4

 Use existing MHD time-evolution code (e.g., M3D-C1, 
NIMROD)

 Desirable traits for neoclassical drift–kinetic equation 
(DKE) solver
 Three-dimensional toroidal geometry

 Study nonaxisymmetric geometries with magnetic islands

 Full Fokker-Planck-Landau collision operator
 Use of model collision operators can lead to errors of 5%-10%3

 Continuum model
 Good convergence properties, especially for long times

 Straight-forward coupling to MHD solvers

 Potentially more computationally efficient than PIC

3 E.A. Belli and J. Candy, Plasma Phys. Control. Fusion 54, 015015 (2012)



Ramos Form of DKE
5

 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides 
analytic framework for a neoclassical solver 
appropriate for core plasma instability simulations

 DKE evolves          , difference between full distribution 
function and shifting Maxwellian (similar to delta-f)

 Small parameters for high-temperature fusion plasmas  

 Important properties:  
 Maintained to collisional inverse timescale of

 Conventional neoclassical banana regime for electrons 

 Velocity      referenced to each species’ macroscopic flow

 Perturbed distribution function carries no density, parallel 
momentum, or kinetic energy



Overview of new code
6

 NIES code4 successfully solved axisymmetric Ramos 
DKEs to zeroth order in collisionality

 We’ll retain axisymmetric geometry for now

 Want to solve the full Ramos DKE without further 
expansions in collisionality

 Extends result to first-order in collisionality

 Allows solution to vary poloidally

 Solves for particles’ distribution functions in both 
trapped and passing regions

 Will couple directly to MHD equations
3 B.C Lyons, S.C. Jardin and J.J. Ramos, Phys. Plasma 19, 082515 (2012) 



Extended MHD equations
7

 Besides Maxwell’s and continuity eqs., we have:

 Ohm’s Law

 Momentum evolution

 Pressure evolution 



Required Moments for Closure
8

 Pressure Anisotropy

 Parallel Heat Flux

 Collisional Friction Force

 Collisional Heat Sources

 All of these moments are given by the solution to appropriate DKEs

 We’ll only consider the electron DKE here



Electron drift-kinetic equation
9

 Assumes equal ion & electron temperatures

 Axisymmetric 4D phase space
 denotes a flux surface,     is the poloidal angle

 is the total velocity,                   is cosine of the pitch angle

 Density, temperatures, and pressures are flux functions



Electron Collision Operator
10

 Fokker-Planck-Landau form used

where

 Poisson equations for the Rosenbluth potentials



Time advancement of Electron DKE
11

 Implicit, homogeneous convective and collision operator terms 

 Explicit, homogeneous moment terms
 No stability constraints expected since these are integrals over the solution

 Predictor-corrector option available, but no substantial effect observed

 Inhomogeneous drive terms



Expansions in DKE
12

 Velocity

 Finite elements for

 Hermite cubics

 Cubic B-splines

 Pitch angle

 Legendre polynomials in 

 May try finite elements soon as well

 Configuration Space

 Fourier modes in

 is just a parameter (each flux surface treated locally)

 May try finite elements in     or in 



DKE Solution Method
13

 Poisson equations for Rosenbluth potentials solved 
simultaneously with DKE at each time step

 Galerkin method creates a block diagonal matrix in

 Each block contains information on     and θ derivatives
 Two solver options implemented 

 Sparse banded matrix using ScaLAPACK
 SuperLU via PETSc



Timescales

 Distribution function will likely evolve to steady state 
within a resistive time

 Must consider full time dependence as MHD code 
time steps (10-100 Alfven times) can be less than the 
electron collision time

14



Hybrid iteration scheme
15

Evolve DKE(s) to get 
(possible steady state) 
distribution function  
for given equilibrium

Take moments to get 
necessary closures for 

MHD equations 

(e.g., friction force)

Evolve MHD 
equations to get new 

equilibrium using 
extended MHD time 

evolution code



Status of code
16

 All terms have been implemented

 Good convergence properties observed

 See poster #89 on Tuesday afternoon if interested

 Initial benchmarks show good agreement with 
Sauter analytic formulae for

 Neoclassical conductivity

 Pressure gradient drive coefficient



Calculating Sauter-like coefficients
17

 When run to steady state, we can calculate the 
neoclassical conductivity and bootstrap current 
coefficients for an equilibrium

 Must separate inhomogeneous source terms in DKE

 Coefficients given by collisional friction force and 
pressure anisotropy via parallel Ohm’s law



Benchmark with Sauter model (1)
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Benchmark with Sauter model (2)
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1D MHD Test Solver
20

 From                               ,                                                  , we

can show that                        where                                     ,

, and

 Assume a large aspect ratio, expansion equilibrium

 Current controller applies loop voltage at edge

 All knowledge of resistivity comes through the Ohm’s Law

 For stability:

 Initial studies do not include bootstrap currents



Evolution with Spitzer resistivity
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Evolution with DKE solver (no dP/d ψ)
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Future work
23

 Complete Sauter benchmark for Te gradient drive

 Include bootstrap currents in MHD test solver

 Compare to MHD evolution with Sauter model on 
different timescales

 Implement separate, but similar, ion DKE solver for 
ion temperature gradient drive

 Couple to existing, more advanced MHD codes
 TSC

 M3D-C1

 Investigate alternate representations and  
extensions to non-axisymmetric geometries



Summary
24

 The operation of ITER and other future MCF experiments 
requires predictive capabilities for core plasma 
instabilities (e.g., Sawtooths, NTMs)

 To date, no neoclassical code exists that is well-suited for 
such simulations (work by E. Held excepted)

 We are creating such a code based on the Ramos drift-
kinetic formulation

 DKE solution benchmarked to Sauter in steady-state
 Temperature gradient coefficient benchmarks coming soon

 Initial hybrid simulations with neoclassical resistivity yield 
good results
 Hybrid simulations with bootstrap current coming soon

 Poster #89 Tuesday afternoon



Extra Slides
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Convergence of Conductivity
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Convergence of P Gradient Drive
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Convergence of Te Gradient Drive
28



Legendre & Fourier Convergence
29

 Low collisionality requires many Legendre polynomials (L) 
and Fourier modes (M) to converge

 Likely due to steep trapped-passing boundary layer
 May necessitate move to finite element representations


