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motivation 
• What causes a plasma to disrupt? 

 
• Linear stability to all global modes for all time will 

ensure disruption-free operation. 
 

• However, the converse is not true.    
– Linear instability does not necessarily imply a disruption. 

 
• Can we use a non-linear MHD code to identify 

nonlinear events that lead to a disruption (or not)? 
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NSTX pressure driven modes with q0 ≥  1 
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Toroidal current pressure 
Series of geqdsk equilibrium for shot 
124379 generated by S. Gerhardt for 
2011 Breslau, et al NF paper.  
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Possible mechanism for soft beta limit 

Shot 124379 
Time .640 
q0 = 1.28 
No toroidal rotation 
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extrapolated 

Initially, only 
n=3 is 
unstable 

All modes 
saturate  
with K.E. 
decreasing 
with time β decreases slightly in time, 

but no more than in an 2D run 
with same transport model 
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500 1400 6000 400 Soft beta limit 
q0 = 1.28 

Poincare plots  

∆Te   

Surfaces deform, 
become stochastic, 
& completely heal. 

First pure n=3, then 
nonlinear, finally 
axisymmetric 
annulus 
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•  Comparison of 3D run at t=6000 with 2D run with identical 
transport coeffs. shows thermal energy has been redistributed. 
 

•  Central Te differs by 10%,  beta differs by only 0.6 % 

 soft beta limit -- continued 
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 dependence on heating source 

•  Previous run had beta decreasing in time, even in 2D case, because 
there was no heating source (except Ohmic). 
 

•  Now add neutral beam source to keep beta constant and to drive 
sheared toroidal rotation 

With neutral beam source 

Previous run with Ohmic 
heating only 
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 dependence on heating source-cont. 
Ohmic heating only With neutral beam source 

With heating and momentum source: 
(constant beta and sheared rotation) 
   
•  Initial linear growth of n=3 mode 
much slower 
 

•  n=3 and higher harmonics do not 
decay away:  surfaces distort 
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 effect of increasing (decreasing) heating 

1 2 

3 

1 2 3 

Heating halved Heating doubled •  With heating reduced, 
plasma returns to an axi-
symmetric state (2) 
 

•  With heating 
increased, surfaces 
become more distorted, 
but still exhibits 
confinement (3) 
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 effect of increasing (decreasing) heating 

2 

3 •  at low heating power, Te 
profiles from 2D and 3D agree 
 

•  at higher heating powers, 
they differ considerably 

1 

2 1 3 
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 importance of sheared rotation 

With 
heating and 
momentum 
input 
(sheared 
rotation) 

With 
heating only 
(no rotation) 

t=2000 t=3000 t=4000 t=5000 
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Compare                                 
these  

 equilibrium with lower q0 
shows thermal collapse 

q0 = 1.28 q0 = 1.06 



13 

 numerical convergence study 
Original constant β run With double the poloidal zones 



summary 
• M3D-C1 working nonlinearly in production mode 
 
• Studying nonlinear consequences of exceeding beta limits in 

NSTX for q0 > 1.    
 

• Mechanism for soft beta limit identified. 
 

• Sheared rotation is stabilizing 
 

• More violent behavior expected as q0  1 
 

• Convergence studies underway 
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Several types of long-time behavior have been found 

We are using M3D-C1 to solve the MHD equations to 
compute the self-consistent long-time (transport timescale ) 
behavior of a tokamak discharge subject to: 

•  loop voltage (IP controller) 
•  density source (ne controller) 
•  heating source (NB) 
•  momentum source (NB) 
•  shaping fields 

•  resistivity 
•  viscosity 
•  thermal conductivity  κ||  &  κ⊥ 
•  particle diffusivity 
•  ion-skin depth c/ωpi 

Depending on these physical parameters, we find two types of long-term 
behavior of the system: 
 
•  periodic oscillations  (sawteeth) 
 

•  stationary helical states with flow 
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Canonical periodic oscillating discharge 

DIII-D  118164- J45 
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q-profile evolution 
during single 
sawtooth cycle 



Sawtooth Movie 

9 



DIII-D shot 118164 DIII-D shot 118162 

Differences in sawtooth behavior for bean-shaped and elliptical-shaped 
plasmas has been well documented experimentally   (Lazarus, Tobias, …) 
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Comparison of Ellipse and Bean 

Bean has shorter period, larger amplitude n=1, less decay in energy harmonics between ST. 
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Comparison of Ellipse and Bean 
Ellipse Bean 

In Bean:  -- q=1 surface extends to a larger radius 
  --  q(0) does not vary as much during sawtooth cycle 
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Stationary Helical State with Flow 
In some cases, the sawteeth die out, and the 
system  becomes stationary on all timescales. 
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ϕ=0 ϕ=90 ϕ=180 ϕ=270 

T=24000 

Poloidal 
Velocity  
 
max=0.00064  

Toroidal 
Velocity 
               
(Max= .004) 

CMOD run25 16 

Electron 
Temperature 



T=17000 T=20000 T=24000 

Mode is 
rotating 
every 
7000 τA 

Surfaces are almost 
axisymmetric with just 
a small m=1 island 

q = 1+ε over large region 
in center of plasma 

CMOD run25 
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Te at same poloidal location as time evolves - 



Interior to the region where q=1+ε,  p, n, and T profiles are not 
constant on the magnetic surfaces.   i.e.,  p ≠ p(ψ) 
 
Exterior to the q=1 surface, they are constant on surfaces p=p(ψ) 

CMOD run25 
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Terms in temperature equation 
2

e eu T J Tη κ⊥∇ = +∇ ∇ 

7 7 83.4 10 3.7 1 3.00 10− −− − ×× ×

8 7 73.7 11.0 0 3. 110 7 0− −− × − ×× 

Axisymmetric state (before) Non-axisymmetric state (after) 

CMOD run25 
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Viscosity Scan 

•  Max KE amplitude increases with µ-1 (to a point) 
•  Period increases with µ 
•  Lowest µ can have more complex behavior 
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Effect of Sheared Rotation 

Without 
rotation 

With sheared 
rotation 

Without sheared rotation in ellipse:  
•  sawteeth tend to die out 
•  large magnetic islands form 
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Two-Fluid Effects 
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•   Full Braginskii gyroviscus tensor 
 

•   Keep J x B term in Ohm’s law 
 

•   8 scalar variables advanced in time 
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2F sawtooth shows distinctive shape 

59 57 58 

CMOD run25 
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Surfaces are destroyed in reconnection  region 
during temperature crash 

63 65 61 

Te crash 

CMOD run25 
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di=0 di= 0.04 

Comparison of surfaces for resistive and two-fluid 
MHD at similar stage in cycle shows reconnection 
layer is shorter in two-fluid.  Rate increases by ~ 2 
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Summary  
•  M3D-C1 has gone through many verification tests 
 

•   Two types of long time behavior:  periodic or stationary states 
 

•   Comparison of ellipse and bean shaped X-section has begun 
 

•    Stationary states can have pressure and temperature 
variation within surfaces 
 

•    Growth rate almost independent of viscosity, but peak ke 
differs 
 

•     Sheared rotation promotes periodic behavior and good 
surfaces 
 

•     Two fluid terms lead to more circular interior surfaces, 
shorter reconnection layer, and faster reconnection times, 
however stochastic layer forms at late times 26 
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