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Convergence from the stable side is achieved with a C0 
spectral-element representation by projecting flow-
divergence and parallel vorticity at the limit of resolution. 



Introduction: NIMROD’s C0 spectral-element 
implementation is formulated to allow dissipation for each 
physical field.  
•  Like conventional thermal-conduction and structural-mechanics 
applications, second-order derivatives lead to mathematical ‘energy’ 
increasing as the scale of oscillations decreases. 

•  In 1D, for example: 

•  Continuous functions are necessary, and they are sufficient in the 
sense that greater continuity is not required. 

•  First-order spatial derivatives do not provide a coercive energy.  The 
following single-field formulation does not bound fine-scale oscillations. 
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•  The extended-MHD dilemma is that physical dissipation is important but 
small, and interchange provides sources of energy at small scales. 



NIMROD’s standard spectral-element representation 
with equal-order V, B, and p expansions converges 
on interchange from the unstable side. 

•  Test case is m=4, k=-1.78 Suydam mode at rs=0.371 and Ds(rs)=0.443. 

•  Reducing the polynomial degree for V in NIMROD admits numerical 0-frequency, 
mesh-scale modes that accumulate in nonlinear computations. 

NIMROD results with its standard-
methods converge from the unstable side. 

CYL_SPEC 1D eigenvalue results 
compare different expansions. 

indicative of NIMROD’s 
standard representation 



Spectral projection: Including numerical responses 
to the highest-order projections of flow divergence 
and of parallel vorticity helps stabilize the numerics. 
•  Spectral filtering has been used to stabilize spectral-element 

computations of incompressible flow. [Fischer and Mullen, C. 
R. Acad. Sci. Paris 332, 265 (2001).] 
•  In their paper, interpolation-based projection damps all 

vector-components of highest polynomial-degree for V. 
•  It is used to stabilize computation at large Reynolds 

number. 
•  ‘Spectral projection’ for NIMROD means damping or 

propagating the highest-order Legendre polynomial in the 
spectral-element space. 

•  Projection can target specific behavior, such as divergence, 
perpendicular divergence, and/or parallel vorticity in MHD.  



With NIMROD’s 2D elements, divergence and parallel vorticity 
are projected onto Legendre polynomials that are of highest 
degree in one of the two logical coordinates. 

For bicubic V, the discontinuous fields for projection are N=3 Legendre polynomials 
in one of the two logical coordinates and a full expansion in the other. (4 of 7 shown)  



Auxiliary fields associated with projection can be used 
for either hyperbolic or diffusive stabilization. 

Hyperbolic (loosely): d
dt
V = ρ−1F+ fdcm∇σ + fvcAb̂×∇λ

∂
∂t
σ = fdcm∇⋅V

∂
∂t
λ = fvcAb̂ ⋅∇×V

Diffusive (loosely): 
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where F is the physical force density, cA is the Alfven speed, cm is 
the magneto-acoustic speed, and Δt is the NIMROD timestep. 



The weak form of the hyperbolic approach shows how 
projection is implemented with spectral elements. 
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for all W in the continuous 3-vector space used for V and for all 
υ and µ in the discontinuous projection set used for σ and λ, 
respectively. 

•  Surface terms and gradients of background fields are discarded. 

•  Overlap with pressure and J✕B responses only occurs at the limit 
of resolution, where the physics is represented poorly. 



Projections in NIMROD: Linear and nonlinear tests 
substantiate the practicality and effectiveness of spectral 
projections. 

•  The implementation incorporates a new modal-basis module. 
•  Routines for advancing V have new terms and equations for 
projecting divergence and parallel vorticity. 
•  Coding for physical terms is unchanged. 

•  Tests of linear, initial-value behavior include: 
•  The cylindrical profiles used with CYL_SPEC for testing local 
interchange, 
•  Tearing modes (not discussed here), and 
•  The circular cross-section, toroidal dens8 ELM profile from P. 
Snyder.  [See Burke, et al., PoP 17, 032103 (2010).] 

•  Nonlinear tests include: 
•  An unstable cylindrical interchange, and 
•  The circular cross-section ELM problem. 



Time-dependent, linear ideal-MHD NIMROD computations 
confirm the stabilizing effect when the divergence and 
vorticity projections include dissipation. 

•  Computations for a physically stable m=3, Ds=0.224 case show no 
growth over 10,000s of time-steps when a separate field is also used for 
magnetic divergence control. 
•  Convergence on the physically unstable m=4 is from the stable side. 

Comparison of NIMROD interchange 
convergence with different methods, 
all using biquartic elements. 

Contours of Vφ from the 48×24 case 
with projection and separate div(B) 
field. 

unstable side 

stable side 



A variant of the cylindrical problem that is physically 
unstable to interchange provides a nonlinear test. 

•  The region 0 ≤ r ≤ 0.466 is 
Suydam-unstable. 

•  With Lz=4π/3, the (3,1) mode 
resonant at 0.265 and the (7,2) 
mode resonant at 0.404 are 
unstable.  The (4,1) mode resonant 
at 0.5 is stable. 

•  τA = Lz/cA = 4π/3; τr = a2µ0/η = 108; 
Pm=10 

•  Dn= η/µ0; χiso = 10η/µ0	


•  The computations use a 32x36 mesh of biquintic elements with 
0≤n≤21 Fourier representation of the axial direction. 

•  The case with projection uses the diffusive method (dd=1, dv=0.3). 

Safety factor and Suydam parameter 
for the nonlinear interchange 
computation. 



The computation with projection recovers from MHD 
events, whereas one without projection accumulates noise. 

•  The computation with projection progresses into a turbulent stage. 
•  The computation without projection crashes as noise accumulates. 

Kinetic fluctuation energies for the case 
with projection.  (Vertical lines show times 
of contours on next slide.) 

The spectrum computed without 
projection flattens, indicating 
accumulation of numerical noise. 



The evolution of pressure with projection shows 
a transition to turbulent transport. 

Sequence of pressure from the nonlinear interchange computation 
with projection shows an initial m=3 burst followed by multi-scale 
nonlinear fluctuation. 

t = 495 τA  t = 3100 τA  t = 4800 τA  

t = 5600 τA  t = 5930 τA  t = 7250 τA  



The successful evolution has fine-scale fluctuations 
without mesh-scale noise. 

Velocity vectors overlaid on 
contours of pressure at the end of 
the computation with projection. 

When the computation without 
projection leaves the laminar stage, 
its flow field becomes noisy. 

•  The computation with projection is not fully resolved, but robust 
progression facilitates nonlinear convergence. 



Linear ELM computations also demonstrate 
convergence from the stable side with projection. 

Equilibrium profiles for dens8. 

Growth rates for the indicated 
biquartic meshes without projection. 

Growth rates with projection.  Arrows 
show direction of convergence. 

•  We consider the standard, circular cross-
section dens8 equilibrium as a starting point. 

•  All physical dissipation coefficients have the 
same small uniform value: S=1010, Pm=1, etc. 

•  Like the interchange cases, projection leads to 
convergence from the stable side. 



A nonlinear MHD computation from the same equilibrium 
exercises projection with a more violent instability. 

•  The domain imposes periodicity at 1/6th of the toroidal angle. 
•  Resistivity varies as T-3/2 with S(0)=106; Pm=0.1; χiso = 0.01η/µ0.	


•  Projective stabilization is also used in the continuity equation. 

Selected kinetic fluctuation energies 
show that the largest-n remains small 
relative to others. 

At t = 214 tA in the computation, the ELM 
is expelling mass and energy from the 
pedestal; n is shown. 

•  Having stabilized flow, preserving monotonicity in the n and T evolution 
is now the most important consideration for fast dynamics. 



Aside on DKE:  The spectral-element form of the 
collision operator has been implemented and is 
more computationally efficient.  [Held] 

•  A benchmark uses an NSTX equilibrium at realistic temperature. 
•  The DKE is the Hazeltine-equivalent form solved by NEO. 

•  The new implementation makes high-temperature computation practical. 



Vacuum-field computations: Computing external 
magnetic field on a spectral-element mesh is an 
alternative to coupling Green’s function solutions. 

•  Computational sub-domains can be assigned to solve the vacuum-
distribution without advancing a plasma model. 

•  External solutions may be coupled by thin-wall approximation or by 
meshing a finite-thickness wall. 

•  Working directly with NIMROD’s magnetic-field representation leads to a 
minimization problem at each time-step. 
•  For the external subdomains, minimize 

 
subject to         along          , consistent with coupling to the plasma-
region. 

Ivac = ∇×B( )2 +λB ∇⋅B( )2$
%&

'
()dVol

Rvac
∫

B ⋅ n̂ ∂Rvac



The minimization computation has been 
implemented in NIMROD and tests match analytics. 

•  Tests are performed in a box that is periodic in one coordinate (φ). 
•  Solutions to boundary-value problems are products of sine waves and 

hyperbolic trigonometric functions. 
•  Two example results of vacuum-B from NIMROD are shown below. 

Boundary conditions impose half a wave 
on the bottom with n=1 variation in the 
perpendicular periodic coordinate. 

Here the bottom imposes half of a wave 
and the top imposes a full wave, both with 
n=3.  [Implementation & tests by Kyle 
Bunkers.] 



Conclusions 
•  Projecting parallel vorticity and flow-divergence at the limit of 
spectral-element resolution is a practical approach for controlling 
the convergence of numerical interchange.  [See JP8.00125, 
Tues. PM for more analysis.] 

•  Hyperbolic and diffusive methods are possible. 
•  Tests in NIMROD confirm 1D CYL_SPEC eigenmode results. 

•  Diffusive projection provides smoothing of nonlinearly driven 
mesh-scale oscillations. 

•  A nonlinear interchange problem successfully transitions to 
turbulent transport. 
•  ELM computations progress into the late nonlinear phase. 

•  Computing vacuum-region magnetic field response with 
NIMROD’s B-field representation is tractable. 
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