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Questions To Be Addressed:

1) Lessons learned from modeling RMP effects on pedestals?

2) What plasma models are applicable for ITER parameters?

3) Next steps for extended MHD modeling of tokamak plasmas?

Outline:

•Modeling of small 3-D fields in tokamak plasmas (e.g., RMPs)

• Key plasma length and time scales in ITER

• Self-consistent modeling of plasmas on a hierarchy of time scales:
plasma kinetic equation with Fokker-Planck collision operator and sources,

fluid moment equations when t > 1/ν, Chapman-Enskog kinetic equation,

extended MHD (ideal MHD for t < 1/ν, dissipative MHD for t > 1/ν),

and comprehensive plasma transport equations.

• Next steps for extended MHD =⇒ GUTS
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Major Themes Of My CEMRACS 2014 Lectures1

• The fundamental 6-D (~x, ~v) plasma kinetic equation (PKE) is mainly a first

order hyperbolic (Vlasov) equation with a small parabolic (diffusive in ~v) op-

erator due to Coulomb collisions that is critical for temporal irreversibility and

entropy production in kinetic, extended MHD and transport equations.

• Plasma kinetics is fundamental, but for time scales longer than species collision

times (i.e., t > 1/νs) 3-D (~x) fluid equations (extended MHD and transport)

are feasible, appropriate, useful and needed. They are exact to extent that

the relevant Chapman-Enskog kinetic equation (CEKE) can be solved for the

kinetic distortion Fs which yields the needed collisional and closure moments.

• At present a GRAND UNIFIED TOKAMAK SIMULATION (GUTS)?

— for developing “predictive capability” for ITER — seems to require us to:

use small gyroradius expansion to order various tokamak physics effects, especially those
in the radial, parallel, and toroidal components of the species force balance equation,

use extended MHD to check macrostability, obtain ~B field structure including plasma
responses to 3-D fields, reconnecting regions and stochastic fields near separatrix X points,

determine microturbulence by solving the CEKE in this “distorted” ~B field geometry and
produce the collision- and microturbulence-induced closures and radial transport fluxes,

solve resultant tokamak plasma transport equations simultaneously for ne, Ωt (Eρ), ps, and

then iterate these extended MHD, CEKE, closures and transport steps for self-consistency.

1J.D. Callen, CEMRACS 2014 “Fluid and transport modeling of plasmas” lectures available via http://homepages.cae.wisc.edu/~callen/plasmas.
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Plasma Response Reduces RMP-Fields At Rational Surfaces

• RMP-induced m/n
fields from M3D-C1

are reduced from vac-

uum values on m/n

rational surfaces,

by flow-screening fac-

tor fscr ≡ δBpl/δBvac,

but grow ∼ linearly

away from them.

• Parameters of the
highlighted 11/3
RMP field are

fscr ∼ 0.1,

LδB ∼ 0.02 a

∼ 1.6 cm.

ρ

126006@3600 ms

vacuum

Figure 1: Flow-screened RMP-induced 〈B̂pl
ρm/n〉. Courtesy

of N.M. Ferraro, O. Meneghini & S.P. Smith 2012.
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Flutter Model χe and Te Profiles Using M3D-C1 RMP
Fields Matches 5.2 kA 126440 Data Reasonably Well2

• “Diffusivity hill” at pedestal top reduces |~∇Te|, limits pedestal
expansion =⇒ ?stabilizes P-B instabilities, suppresses ELMs?

• Island model predicts too much transport and too flat Te profile.
2P.T. Raum, S.P. Smith, J.D. Callen, N.M. Ferraro and O. Meneghini, “Modeling of Magnetic Flutter-Induced Transport In DIII-D,” GA-A27559,

July 2013. S.P. Smith, invited talk NI2.05 on “Magnetic Flutter Plasma Transport Induced by 3D Fields in DIII-D,” APS-DPP mtg., Nov. 11-15, 2013.
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Figure 2: Electron thermal diffusivity pro-

files for flutter and island models in

DIII-D RMP discharge 126440.
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Figure 3: Corresponding Te profiles for

flutter and island models in the edge

of DIII-D RMP discharge 126440.

JD Callen/CEMM meeting, New Orleans, LA — October 26, 2014, p 4



RMP Flutter Model Validation Studies Status, Future

• Present status of flutter transport model validation studies:
it matches power balance (ONETWO) χRMP

e reasonably well for 2 cases;2

need more cases, with low βped
e where linear M3D-C1 might be applicable?

• Next level RMP-induced flutter predictions3 need to be tested:
increases in electric field Eρ in edge region and at the pedestal top,

increase in density diffusivity (∼∆Eρ?) at pedestal top, which may be critical
for ELM suppression because density growth there precipitates ELM;4

near-separatrix X-point flutter transport model that is being developed.5

• Critical elements of flutter plasma transport modeling are:
toroidal rotation profile Ωt — for flow-screening plasma response of RMPs,
~B field induced in plasma by RMPs — from M3D-C1 extended MHD modeling,

analytic model of RMP-induced radial plasma transport – for prediction, and

ONETWO modeling using diagnostic data — for experimental transport.

• This validation study needs integrated, self-consistent modeling that
couples extended MHD for ~B including plasma response to Ωt, kinetic

determination of flutter transport, and transport modeling of ne, ps AND Ωt.

3J.D. Callen, C.C. Hegna and A.J. Cole, “Magnetic-flutter-induced pedestal plasma transport,” Nucl. Fusion 53, 113015 (2013).
4R.J. Groebner, T.H. Osborne, A.W. Leonard and M.E. Fenstermacher, “Temporal evolution of H-mode pedestal in DIII-D,” NF 49 045013 (2009).
5J.D. Callen and C.C. Hegna, “RMP-Induced Plasma Transport Near X Point,” poster GP8.23, New Orleans APS-DPP Meeting, October 27–31, 2014.
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MODELING SUMMARY: Status, Issues And Research Topics

• Modeling of Tokamaks: There are many effects in plasma transport equations:

transients, collision- & microturbulence-induced transport, sources & sinks, small 3-D fields.

• 3-D Field Effects: Fundamental physics of the effects of 3-D magnetic field

perturbations on toroidal plasmas has “come of age” over the past decade:

transport-time-scale equation for Ωt (Eρ) evolution including 3-D effects is now available,

NTV theory nearly validated — torque magnitude, offset frequency, peak at ωE → 0,

toroidal field ripple reduces Ωt — edge direct ion losses plus NTV effects,

resonant n=1 field error effects, correction — mode locking criteria including RFA effects,

resonant field amplification (RFA) — via “least stable” n=1 kink MHD plasma responses,

progress on interpreting RMP effects on H-mode pedestals — flutter at top, ?near separatrix.

• Combination of 3-D field effects with extended MHD needs to be developed:

NTMs and RWMs interact with low n external δ ~B — sensitivity increases at low Ωt, high β,

resonant magnetic perturbations (RMPs) — stochasticity is limited by Ωt “flow screening,”

3-D plasma transport effects — directly on Ωt, but mostly indirectly on ne, T transport.

• For a comprehensive approach for “whole device” transport modeling

we need to develop and begin using a self-consistent theoretical framework for combining
extended MHD, consistent KE, closures and plasma transport equations for tokamaks.
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Characteristic Length And Time Scales In Plasmas
Span Many Orders of Magnitude (ITER and ICF)

• Projected parameters for ITER whereBt = 5.6 T, Te∼Ti∼10 keV,
ne∼1020 m−3, and major/mid-plane minor radius ' 6 m/2 m are:

Length Scales Time Scales

minimum impact distance bqmmin 10−12 m

mean particle spacing n−1/3e 2×10−7 m
Debye shielding length λDe 7×10−5 m plasma period 1/ωp 2×10−12 s
deuteron gyroradius %D 3×10−3 m deuteron gyroperiod 1/ωcD 3×10−9 s
average minor radius ā 3 m Alfvén period ā/cA 5×10−7 s
collision length λ 1.2×104 m electron collision time 1/νe 2×10−4 s

deuteron collision time 1/νD 3×10−2 s
energy confinement time τE 6 s
fusion collision time 1/νfus 200 s

Dimensionless Parameters formula ICF ITER

number of electrons in a Debye cube neλ
3
De 3.5×103 4×107

electron collision to plasma frequency νe/ωp 4×10−5 10−8

%∗: deuteron gyroradius to average minor radius %D/ā 10−3

collision length to relevant length λ/L λ/ā ∼ 0.4 λ/2πR = 320

JD Callen/CEMM meeting, New Orleans, LA — October 26, 2014, p 7



Characteristic Length And Time Scales In Plasmas
Span Many Orders of Magnitude (DIII-D and ITER)

• Typical parameters for present magnetic fusion experiments such
as DIII-D where Bt = 2 T, Te ∼ Ti ∼ 3 keV, ne ∼ 3×1019 m−3,
Zeff ' 2 and major/mid-plane minor radius ' 1.7 m/0.6 m are:

Length Scales Time Scales

minimum impact distance bqmmin 2×10−12 m

mean particle spacing n−1/3e 3×10−7 m
Debye shielding length λDe 7×10−5 m plasma period 1/ωp 3×10−12 s
deuteron gyroradius %D 5×10−3 m deuteron gyroperiod 1/ωcD 10−8 s
average minor radius ā 0.8 m Alfvén period ā/cA 10−7 s
collision length λ 1.8×103 m electron collision time 1/νe 5×10−5 s

deuteron collision time 1/νD 3×10−3 s
energy confinement time τE 10−1 s

Dimensionless Parameters formula DIII-D ITER

number of electrons in a Debye cube neλ
3
De 107 4×107

electron collision to plasma frequency νe/ωp 6×10−8 10−8

deuteron gyroradius to average minor radius %∗ ≡ %D/ā 6×10−3 10−3

collision length to toroidal circumference λ/2πR 170 320
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Modeling Tokamaks Employs Some Key Approximations

• The fundamental approximation used in modeling tokamak plas-
mas is that the gyroradii (ρi ≡ vT i/ωci) of the charged ions in

the magnetic field ~B are small compared to macroscopic gradient
scale lengths L ∼ 1/|~∇ ln(B,n, T )| (i.e., %∗ ≡ %i/L� 1). This fa-
cilitates analytic analyses on hierarchy of ever longer time scales:

“collisionless” parallel (to ~B) free streaming, sound and Alfvén waves (∼ µs),

particle drifts across magnetic field lines, fluid descriptions, collisional
effects on species flows, magnetic reconnection etc. ( >∼ ms), and finally

transport of plasma across magnetic field lines and flux surfaces due to
collisions, radially localized microturbulence and 3-D field effects ( >∼ s).

•Modeling of ITER plasmas involves a hierarchy of time scales:

“collisionless,” t�1/νe∼0.2 ms — Landau damping, ion gyromotion, Alfvén
and sound waves, ideal MHD and kinetic drift-wave instabilities,

collisional — Ohm’s law (> 1/νe ∼ 0.2 ms), damping of “poloidal” flows
(> 1/νi ∼ 34 ms), fluid equations, resistive/neoclassical MHD instabilities,

transport τE ∼ a2/χ⊥ ∼ 6 s — “radial” (cross-field) plasma transport due to
collisions and microturbulence, 3-D field effects.
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Microscopic Approach Yields Plasma Kinetic Equation

• In Klimontovich approach microscopic distribution fµ is sum of
Ns delta functions along particle trajectories in 6-D phase space:

fµ(~x, ~v, t) =
∑Ns

i δ[~x−~xi(t)] δ[~v−~vi(t)] =⇒
dfµ

dt
≡
∂fµ

∂t
+ ~v ·

∂fµ

∂~x
+
~F
µ

s

ms

·
∂fµ

∂~v
= 0,

d~xi

dt
= ~vi, mi

d~vi

dt
= ~F

µ

s ≡ qi[~E
µ
+~vi× ~B

µ
], ~∇·~E

µ
=
ρµq

ε0

, ~∇× ~B
µ

= µ0
~J
µ
.

• Averaging dfµ/dt = 0 over small volume in 6-D phase space yields
plasma kinetic equation (PKE) for average distribution fs ≡ 〈fµ〉:
∂fs

∂t
+ ~v ·

∂fs

∂~x
+

~F s

ms

·
∂fs

∂~v︸ ︷︷ ︸
macro, |~x|>λD

= −
〈
qs

ms

~E
µ
·
∂fµ

∂~v

〉
︸ ︷︷ ︸

micro, |~x|<λD

in which ~Fs ≡ qs(~E + ~v× ~B);

LHS characteristic curves are particle trajectory equations
d~x

dt
= ~v,

d~v

dt
=
~F s

ms

;

RHS represents Coulomb collision effects since −
〈
qs

ms

~E
µ
·
∂fµ

∂~v

〉
=⇒ C{fs}.

• Thus, PKE is
dfs(~x, ~v, t)

dt
≡
∂fs

∂t
+ ~v ·

∂fs

∂~x
+

~F s

ms

·
∂fs

∂~v
= C{fs}+ S{fs}.
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Fokker-Planck (F-P) Collision Operator Is Developed
From Coulomb Collision F-P Coefficients

• Fokker-Planck collision operator on particle distribution f is

C{f} = −
∂

∂~v
· ~J~v = −

∂

∂~v
·
(〈∆~v〉

∆t
f

)
+

1

2

∂2

∂~v ∂~v
:

(〈∆~v∆~v〉
∆t

f

)
, in which

〈∆~v〉/∆t and 〈∆~v∆~v〉/∆t are Fokker-Planck drag and diffusion coefficients

• Fokker-Planck collision operator is small momentum transfer limit
(m|〈∆~v〉| � m|~v|) of the Boltzmann collision operator.

• Simplest, Lorentz (subscript L) collision operator CL in spherical
velocity-space coordinates of speed v, “pitch-angle” ϑ, phase ϕ is

CL{f} =
ν(v)

2

[
1

sinϑ

∂

∂ϑ
sinϑ

∂f

∂ϑ
+

1

sin2 ϑ

∂2f

∂ϕ2

]
, ϑ, ϕ diffusion at constant v.

• Fokker-Planck Coulomb collision operator is

“local” in ~x since it results from collisions within a Debye length λD,

a second order differential operator in velocity space ~v.
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Properties Of Collisionless Vlasov And Full PKE
With Coulomb Collision Operator Are Different

•When collisions are neglected, PKE is a first order partial differ-
ential equation in the 6-D phase space called the Vlasov equation:

∂fs

∂t
+ ~v ·

∂fs

∂~x
+

~F s

ms

·
∂fs

∂~v
= 0, which has characteristic curves that are

(without chaos) deterministic particle trajectories via
d~x ′

dt′
= ~v′, ms

d~v ′

dt′
= ~F s,

whose time t solutions are ~x ′(~x0, ~v0, t− t0), ~v ′(~x0, ~v0, t−t0) for I.C. ~x0, ~v0 at t0,

which yields Vlasov solution mapping fs → fs[~x
′, ~v ′, t′] in which t′ ≡ t−t0

that does no smoothing of fs and produces no entropy in stable plasmas.

• Adding second derivative F-P collision operator changes things:

PKE becomes a (diffusive) parabolic second order differential equation;

particle trajectories become slightly probabilistic, not fully deterministic;

PKE becomes singular differential equation where |dfs/dt| <∼ |C{fs}| ∼ νefffs

at δ~v singular layers where νeff ∼ ν/(|δ~v|/v)2 � ν increases plasma entropy.
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Perturbed PKE Is Often Basic Starting Point

• In a plasma with small inhomogeneities in fs, ~E0, ~B0 on λ, % scale
lengths, the equilibrium PKE is C{f0} = 0, whose solution is

f0 = fiMs =
ns e

−v2/v2Ts

π3/2v3
Ts

, the isotropic Maxwellian with vTs ≡
√

2Ts/ms .

•When small electromagnetic field perturbations are introduced,
fs→ fiMs + f̃s and f̃s(~x, ~v, t) is governed by the perturbed PKE:

Lν{f̃s} = S, where Lν is the linear second order partial differential operator

Lν{f̃s} ≡
∂f̃s

∂t
+~v ·

∂f̃s

∂~x
+
qs

ms

(~E0 +~v× ~B0) ·
∂f̃s

∂~v
−C{f̃s}, and “source” is

S =−
qs

ms

( ~̃E + ~v× ~̃B) ·
∂fiMs

∂~v
−

qs

ms

( ~̃E + ~v× ~̃B) ·
∂f̃s

∂~v
, response to ~̃E, ~̃B.

• Different solution procedures are currently used in limiting cases:

collisionless — integrate along trajectories =⇒ f̃s(t) = f̃s(t
′=0)+

∫ t
0 dt

′ S(t′),

collisional — solve collision-induced dissipative singular layers in steady state.
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Perturbed PKE Can Be Solved With Green Function

• Green function solution of perturbed PKE Lν{f̃s} = S is

f̃s(~x, ~v, t) =
∫ t

0 dt0
∫
d3x0

∫
d3v0 Gν(~x, ~v, t|~x0, ~v0, t0) S(~x0, ~v0, t0).

• Defining equation for Green function in the 6-D phase space is

Lν{Gν} = δ[~x− ~x0] δ[~v − ~v0] δ[t− t0] ← Dirac delta functions.

• Using short time isotropic operator Ci{f̃s} = (ν/2)∇2
v f̃s or long

time Krook operator CK{f̃s} = − νf̃s, combined Green function is

G∞ν = δ[~x−~x0−~v0τ ]H(τ )×
{
e−|~v−~v0|2/(2ντv20)/(2πντv2

0)3/2, ντ � 1,

e−ντ δ[~v−~v0], ντ � 1,

which includes diffusive scattering of ~v at rate νeff ∼ ν/(|~v − ~v0|/v0)
2� ν

for short times τ ≡ t−t0, or damping at a rate ν for long times.

• Two key examples of rigorous solutions of PKE are:

ντ � 1 — Coulomb collisional scattering effects on linear Landau damping,6

ντ � 1 — fluid moment approach for collisional magnetized plasmas.

6J.D. Callen, “Coulomb collision effects on linear Landau damping,” Phys. Plasmas 21, 052106 (2014)

JD Callen/CEMM meeting, New Orleans, LA — October 26, 2014, p 14



Solution Procedure Is Different When Collisions Dominate

• Plasma kinetic equations are usually solved in separate limits:

low collisionality — kinetic solutions with test particle collision operator,

collisional — fluid moment closures obtained with full F-P collision operator.

• Fluid moment descriptions for a given plasma species s are:

viable for t� 1/νs where lowest order distribution becomes a Maxwellian,

feasible, relevant and very useful because they

reduce the plasma description from 6-D (~x, ~v, t) to 3-D (~x, t), but they

require solution of a relevant kinetic equation to obtain needed closures; and

are critical for long time scale of fusion plasmas where 1/νfus � τE � 1/νD.

• Obtaining fluid moment equations requires a number of steps:

1) take
∫
d3v (1,m~v,mv2) moments of the PKE to obtain equations for density

n(~x, t), flow velocity ~V (~x, t) and pressure p(~x, t) ≡ nT of a given species;

2) develop a Chapman-Enskog-type kinetic equation (CEKE) for δf ;

3) expand perturbed distribution δf in a complete set of fluid moments;

4) obtain collisional limit by taking
∫
d3v (· · · ) moments of CEKE and invert

the resultant matrix operator to obtain needed collisional & fluid moments.
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Species s Fluid Moment Equations Are Fundamental

• The
∫
d3v (1,ms~v,msv

2/2) moments of the plasma kinetic equation
(PKE) yield the species s fundamental fluid moment equations :

density (∂/∂t+ ~Vs · ~∇)ns = −ns~∇·~Vs + Sns,

mom. msns(∂/∂t+ ~Vs · ~∇) ~Vs = nsqs(~E +~Vs× ~B)− ~∇ps − ~∇·↔πs + ~Rs + ~Sps,

energy
3

2
(∂/∂t+ ~Vs · ~∇) ps = −

5

2
ps~∇·~Vs + ps ṡMs, or,

entropy (∂/∂t+ ~Vs · ~∇) sMs = ṡMs ≡ (−~∇· ~qs −
↔
πs : ~∇~V s +Qs + Sεs)/ps,

in which the species s isotropic-Maxwellian-based collisional entropy is

sMs(~x, t) ≡ −
1

n

∫
d3v fiMs ln fiMs =

3

2
ln

(
ps

n5/3

)
+ C, collisional entropy.

• But equations are incomplete until these “closures” are specified:

stress
↔
πs, heat flux ~qs ; collisional friction force ~Rs, energy exchange Qs.
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Use Chapman-Enskog Approach For Kinetic Equation

• The Chapman-Enskog Ansatz posits that the distribution func-
tion can be decomposed into two parts — a “dynamic” time- and
spatially-dependent Maxwellian fMs plus a kinetic distortion Fs:

fs(~x, ~v, t) = fMs(~x, ~v, t) + Fs(~x, ~v, t), in which dynamic Maxwellian is

fMs(~x, ~v, t) = fMs[ns(~x, t), ~Vs(~x, t), Ts(~x, t), ~v] =
ns(~x, t) e

−ms[~v−~Vs(~x,t)]2/2Ts(~x,t)

[2π Ts(~x, t)/ms]3/2
.

• Substituting this Ansatz into the plasma kinetic equation yields
dFs

dt
− C{fs} − S{fs} = −

dfMs

dt
, Chapman-Enskog kinetic equation (CEKE),

dfM

dt
= fM

[
−

1

p
~vr ·

(
nq [~E +~V× ~B]− ~∇p−mn (

∂

∂t
+~V ·~∇)~V

)
forces

+

(
mv2

r

2T
−

5

2

)
1

T
~vr · ~∇T T gradient

+
m

T

(
~vr~vr−

v2
r

3
I

)
:W, W ≡

1

2
[~∇~V +(~∇~V )T−

2

3
I ~∇·~V ] rate of strain

+
Sn

n
+

(
mv2

r

2T
−

3

2

)(
2 ṡM

3p
−
Sn

n

) ]
. sources

JD Callen/CEMM meeting, New Orleans, LA — October 26, 2014, p 17



Chapman-Enskog Approach Is Useful And Important

• Chapman-Enskog kinetic equation (CEKE) on the preceding page

is still exact since no approximations or truncations have been utilized;

it is just a recast plasma kinetic equation that has used the Chapman-Enskog
Ansatz to obtain a kinetic equation for the small kinetic distortion Fs.

• Since by construction
∫
d3v (1, ~v, v2

r)Fs = 0,

the kinetic distortion Fs does not produce any extraneous δn, δ~V or δp terms.

Thus, ~qs,
↔
πs, ~Rs and Qs closure moments obtained from velocity-space

moments of accurate solutions of the CEKE for Fs will be consistent with
the fluid moment equations without introducing any extraneous effects.

When a CEKE is not used (e.g., as in present gyrokinetics studies), it should
be shown that

∫
d3v (1, ~v, v2

r)Fs = 0 so there are no δn, δ~V or δp terms, which
would be inconsistent with using kinetic-based results in the fluid equations.

• In the original Chapman-Enskog approaches (with, without ~B)

collisions were assumed to be dominant to solve for the kinetic distortion Fs
from the CEKE to obtain closures for the Braginskii equations.

However, in low collisionality magnetized plasmas this assumption must be
modified for collisional effects on particle motion along magnetic field lines.
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Collisional & Closure Moments Different ‖, ∧ and ⊥ to ~B

• Braginskii moments and closures for an electron-ion plasma are

~Re≡nee
(
~J‖

σSp
+
~J⊥

σ⊥

)
− C∇Tneb̂ (b̂·~∇Te)−

3

2

νe

ωce
b̂×~∇Te, ~Ri = − ~Re,

Qe≡−Q∆ − ~Re· ~J/nee, Qi = Q∆,

~qe≡−neχe‖ b̂(b̂·~∇Te)− neχe∧b̂×~∇Te − neχe⊥[−b̂×(b̂×~∇Te)]
+C∇T neTeJ‖/nee+ (3/2) (νe/ωce) b̂× ~J⊥/nee,

~qi≡−niχi‖ b̂(b̂·~∇Ti)− niχi∧ b̂×~∇Ti − niχi⊥ [−b̂×(b̂×~∇Ti)],

plus similar electron and ion parallel, cross, perpendicular stress tensors
↔
πs.

• Here, new coefficients are σ⊥ ≡ nee/meνe and the diffusivities are

χe‖≡Cχe
v2
Te

νe
, χe∧ ≡

5

4

v2
Te

ωce
, χe⊥ ≡ Cχe⊥ νe

v2
Te

ω2
ce

, Cχe⊥ = 2.33 (Z = 1),

χi‖≡Cχi
v2
T i

νi
, χi∧ ≡

5

4

v2
T i

ωci
, χi⊥ ≡ Cχi⊥ νi

v2
T i

ω2
ci

, Cχi⊥ = 1,

which scale as χ⊥/χ∧ ∼ χ∧/χ‖ ∼ ν/ωc � 1 and thus χ⊥/χ‖ ∼ (ν/ωc)
2 �� 1.
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Braginskii Collisional Plasma Transport Equations
Are Not Directly Applicable To Tokamak Plasmas

• The small gyroradius (%∗ � 1) and strongly magnetized plasma
(ν � ωc) criteria are well satisfied in magnetic fusion experiments.

• However, collision lengths are longer than gradient scale lengths
along ~B, e.g., λe/L‖ ∼ 12 000 m/12 m = 1 000� 1, which violates
the high collisionality assumption for the Braginskii equations.

• Nonetheless, the Braginskii collisional equations are often adapted
and used for modeling tokamak plasmas because the

parallel transport diffusivities D‖ ∼ νλ2 are so large (∼ 1012 m2/s in ITER)
that the basic thermodynamic variables (n, T ) are equilibrated along ~B,

and then the Braginskii equations are applied to the remaining 2-D geometry.

• But dissipative collisional effects along ~B are important:

parallel viscous forces increase the electrical resistivity, produce a “bootstrap
current” driven by ~∇P and damp poloidal ion flows, and

the parallel dissipative effects are important in numerical simulations.
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Extended MHD Model Includes Ideal MHD And The
Dissipative Effects Of Collisional And Closure Moments

• The extended MHD equations for a magnetized plasma are ob-
tained by summing the fluid moment equations over species. To-
gether with equations for electric and magnetic fields they are

Extended MHD plasma description (~Re,
↔
Π,

↔
πe,

∑
s ṡMs → 0 for ideal MHD):

mass density (∂/∂t+ ~V ·~∇) ρm = − ρm~∇·~V ,

charge continuity ~∇ · ~J = 0,

momentum ρm(∂/∂t+ ~V ·~∇)~V = ~J× ~B − ~∇P − ~∇ ·
↔
Π,

Ohm’s law ~E = − ~V× ~B + ~Re/nee+ ( ~J× ~B − ~∇pe − ~∇ ·↔πe)/nee,

equation of state (∂/∂t+ ~V ·~∇) ln(P/ρ5/3
m ) =

∑
s ṡMs.

Maxwell Equations for extended MHD (no Gauss’ law, ~E from Ohm’s law):

Faraday’s law ∂ ~B/∂t = − ~∇×~E,

no magnetic monopoles ~∇ · ~B = 0,

nonrelativistic Ampere’s law ~J = ~∇× ~B/µ0.
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Ideal MHD Provides Tokamak Plasma Constraints

• Stable compressional Alfvén waves enforce equilibrium radial force
balance on very short time scales (ā/cA ∼ 10−7 – 10−6 s) and yield

ideal MHD equilibrium equations: ~J× ~B = ~∇P , ~J = ~∇× ~B/µ0, ~∇ · ~B = 0.

• If the shear Alfvén or sound waves become unstable,

they grow on very fast time scales (R/cA ∼ 10−5 – 10−6 s), and

usually lead to virulent global instabilities and hence plasma “disruptions.”

• Stability criteria for avoiding these ideal MHD instabilities pro-
vide limits on parameter regimes in which tokamaks operate:

sound wave stability, β ≡
P

B2/2µ0

<∼
a

Rq
∼ 0.1 (analogous to Rayleigh-Taylor),

shear Alfvén stability, q '
aBt

RBp

≥ 1 (Kruskal-Shafranov criterion, kink modes).

• Further tokamak analyses assume these ideal MHD stability cri-
teria are satisfied so these virulent instabilities are circumvented.
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Collisional Dissipative Effects Are Important For t > 1/ν

• Resistive effects reconnect (or tear) magnetic field lines in thin
singular layers around low order rational surfaces where q(ψp) =
m/n on which the helical magnetic field lines close on themselves.

• This reconnection process violates the frozen flux theorem of ideal
MHD and can allow slowly growing, radially isolated tearing-type
(classical ~∇Jt-driven and neoclassical ~∇P -driven) instabilities.

• These modes can cause magnetic island topologies to develop in
the plasma which sometimes continue to grow and violently dis-
rupt plasma confinement, i.e., lead to a plasma “disruption.”

•When such deleterious modes are controlled, the equilibrium ex-
tended MHD equations yield prescriptions for the first order (in
the small gyroradius expansion) equilibrium and perturbed flows
and currents (and hence Ohm’s law) on magnetic flux surfaces.

• Key closure for low collisionality tokamaks is viscous stress
↔
πs.
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Consider Collisional Stresses In A Magnetized Plasma

• Collisional Braginskii viscous stresses are defined relative to ~B direction:

↔
π =

↔
π‖+

↔
π∧+

↔
π⊥, parallel, cross (gyroviscous) and perpendicular stresses.

• For strongly magnetized (ωc � 1/ν) toroidal plasmas of fusion interest a small

gyroradius expansion is usually appropriate: %∗ ≡ %/a� 1.

• For arbitrary ~V , the characteristic scalings of the parallel, cross and perpen-

dicular stresses can be written schematically for Rq >∼ λ >∼ a as

↔
π‖ ∼ νλ2 ~∇‖~V ,

↔
π∧ ∼ ν% λ ~B×~∇~V/B ∼ %∗

↔
π‖,

↔
π⊥ ∼ ν%2 ~∇⊥~V ∼ %2

∗
↔
π‖.

• Thus, the parallel viscous stress
↔
π‖ is dominant in small gyroradius, magnetized

toroidal plasmas. We concentrate on it. The
↔
π∧ and

↔
π⊥ are changed less.

• The parallel viscous stresses for electrons and ions were originally written by

Braginskii for each species in the form (z here is coordinate along ~B, Zi = 1)

↔
π‖ = − η0Wzz ~̂ez~̂ez, Wzz ≡ 2

∂Vz

∂z
−

2

3
(~∇·~V ), ηi0 = 0.48nimi

v2T i
νi

, ηe0 = 0.37neme

v2Te
νe
.

• But this is not valid for low collisionality tokamak plasmas where λe≡vTe/νe�L‖.
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Low ν Flow Damping Can Be Included In ‖ Viscous Stress

• A multi-collisionality parallel stress that yields the Braginskii and flux-surface-

averaged (FSA) neoclassical closures has been proposed4

π‖ = πf
‖ + πr

‖ ,

fast, πf
‖ ≡ − 3 η00

(
~B ·~∇×(~V× ~B)

B2
+

2

3
~∇·~V −

( ~B · ~V )(~∇· ~B)

B2

)
,

residual, πr
‖ ≡ − mnµ 〈B

2
0〉

b̂ ·~∇B0

〈 (b̂ ·~∇B0)2〉
(
Uθ − U0

θ

)
, b̂ ≡ ~B0/B0.

• Neoclassical poloidal flow damping frequency µ is of the form

µ '
1.46
√
ε ν

(1 + ν
1/2
∗ + ν∗)(1 + ε3/2ν∗)

, for collisionality parameter ν∗ ≡
ν

ε3/2ωt
=

R0q

ε3/2λ
.

=⇒ banana regime for ν∗ � 1, plateau for 1� ν∗ � ε−3/2, Braginskii for ν∗ � ε−3/2.

• The “offset” poloidal flow velocity for ions is given by

U0
iθ(ψp) ' ki

I(ψp)

qi〈B2
0〉
dT0

dψp
, in which ki =

µi01/µi00

1 + (µi11 − µ2
i01/µi00)/νi11

∼
1.17

1 + 0.67
√
ε
.
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Tokamak Extended MHD Model Is Obtained From Fluid Equations

• Plasma density and charge continuity equations result from sums over species:∑
s

nsms =⇒
∂ρm

∂t

∣∣∣∣
~x

+ ~∇ · ρm~V =
∑
s

msSns,
∑

s nsqs =⇒ ~∇ · ~J = 0.

• Total plasma equation of state (entropy eqn.) is unchanged from usual form (p 3).

• Plasma force balance is obtained by summing momentum equations over species:4

∂(ρm~V )

∂t

∣∣∣∣∣
~x

+ ~∇ · (ρm~V ~V ) = ~J× ~B − ~∇P −
∑
s

(~∇·↔π
f

s‖ + ~∇·↔π
r

s‖ + ~∇·↔πs∧) +
∑
s

~Sps.

• General Ohm’s law is obtained from electron force balance equation (b̂ ≡ ~B/B):

~E = − ~V× ~B +
~J× ~B − ~∇pe − ~∇·↔π

f

e‖ − ~∇·↔πe∧− C∇Tne b̂ (b̂ ·~∇Te) + ~Spe

nee

+
1

σ⊥

(
~J⊥ −

3

2

ne ~B×~∇Te
B2

)
+ ηnc

‖

(
~J‖ − ~J‖drives

)
−
me

e

(
∂

∂t
+ ~Ve·~∇

)
~Ve,

~J⊥ ≡ −b̂×(b̂× ~J),

~J‖ ≡ b̂ (b̂ · ~J).

• Use ~J‖drives ≡
~B

B
〈 ~B0 · ~Jdrives〉 fom p 32, but I

dP

dψp
→ B2

~J⊥·~∇θ
~B ·~∇θ

in 〈 ~B0 · ~Jbs〉.
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Key Properties Of Tokamak Extended MHD Model

• Tokamak extended MHD model adds collisional effects for t > 1/νs

primarily via the viscous forces due to the parallel viscous stresses
↔
πs‖, which

for t > 1/νe > 0.2 ms modifies parallel Ohm’s law by increasing ‖ resistivity
and adds bootstrap current driven by the radial plasma pressure gradient,

and adds poloidal ion flow damping at a rate ∼ νi ∼ 1/(34 ms) to the overall
plasma force balance.

• It is important to recall that the extended MHD model “owns”
the current density ~J because:

in MHD models ~J = ~∇× ~B/µ0 with the magnetic field being determined
from Faraday’s law ∂ ~B/∂t = −~∇×~E in which the electric field is
determined from the extended MHD Ohm’s law, and

proper solutions of the Chapman-Enskog kinetic equation yield kinetic
distortions Fs that have no momentum moments (i.e.,

∫
d3vms~v Fs = ~0)

and hence produce no contributions to ~J .

• Next (final) step will be to obtain net radial transport equations
for a tokamak plasma on the long transport time scale t� 1/νs.
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Next Step: Develop Modern Transport Equations For Tokamaks

• Tokamak plasma transport equations for modeling codes (e.g., ONETWO,

TRANSP) were developed in late 70’s from n, T fluid moment equations with

collisional Braginskii closures; and then ad hoc terms are added for

neoclassical effects on ‖ Ohm’s law (trapped particle effects on η‖ and bootstrap current),

fluctuation-induced transport induced by micro-turbulence,

heating & current-drive and flow sources & sinks,

effects of small 3-D magnetic field asymmetries, etc.

• But tokamak plasmas are not in a collisional regime! (λ � Rq) — and we

should develop transport equations that naturally include all these effects.

• Here, we will develop7,8 self-consistent fluid-moment-based radial transport

equations that include all these effects for nearly axisymmetric single-ion-

species tokamak plasmas using neoclassical-based closures.

• The procedures used (solve for flows in flux surfaces first) and net plasma

transport equations are analogous to those developed for stellarator transport.9

7J.D. Callen, A.J. Cole and C.C. Hegna, “Toroidal rotation in tokamak plasmas,” Nucl. Fusion 49, 085021 (2009).
8J.D. Callen, A.J. Cole, and C.C. Hegna, “Toroidal flow and particle flux in tokamak plasmas,” Phys. Plasmas 16, 082504 (2009); Erratum Phys.

Plasmas 20, 069901 (2013).
9See for example K.C. Shaing and J.D. Callen, Phys. Fluids 26, 3315 (1983) and references cited therein.
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Multi-Stage Strategy Is Used To Develop Transport Equations10

• I. Average the density, momentum and energy equations over fluctuations (i.e.,

average over toroidal angle ζ) and then flux-surface-average (FSA) them.

• II. Key Elements Of New Approach: Consider sequentially specific components of

the equilibrium force balance equations and their consequences:

IIA. Radial: Use zeroth order radial force balance enforced by compressional Alfvén waves
to obtain relation between toroidal & poloidal flows and radial electric field Eρ & dpi/dρ.

IIB. Parallel: Determine the parallel neoclassical Ohm’s law and first order poloidal flows
& heat flows within a flux surface from equilibrium momentum & heat flux equations.

IIC. Toroidal: Require net radial current from all particle fluxes to vanish and thereby
determine FSA toroidal momentum equation, and hence toroidal rotation Ωt (and thus Eρ).

• III. Substitute net second order ambipolar fluxes into FSA transport equations

to obtain final comprehensive “radial” transport equations — for ambipolar

n, pe, pi, and Ωt ≡ ~V ·~∇ζ ' Vt/R (toroidal plasma rotation frequency).

10J.D. Callen, C.C. Hegna, and A.J. Cole, “Transport equations in tokamak plasmas,” Phys. Plasmas 17, 056113 (2010).
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This Approach Is New And Has Some Consequences

• Key differences from usual approaches for plasma transport equations are:

first solve for electrons & ion flows within flux surfaces → ‖ Ohm’s law & poloidal ion flow;

derivation of non-ambipolar density fluxes and toroidal rotation (→ Eρ) are naturally joined;

comprehensive transport equations are obtained for Ωt (→ Eρ) and ψp, as well as usual ne, ps;

effects of micro-turbulence on ‖ Ohm’s law, poloidal ion flow, particle fluxes,
momentum transport and Eρ are all included self-consistently;

fluctuation-induced density flux is obtained from electron 〈ñe ~̃VẼ ·~∇ρ〉 plus Rey., Max. stresses;

source effects (e.g., NBI momentum input and ~JCD) are included self-consistently;

poloidal field transients (ψ̇p 6= 0) and current diffusion time scale effects are included; and

net transport equations follow naturally from extended two-fluid moment equations and
hence are consistent with M3D, NIMROD, JOREK etc. extended MHD code frameworks.

• Some new consequences that result from this approach are:

radial electric field is determined self-consistently and enforces ambipolar density transport;

micro-turbulence should be determined from Chapman-Enskog kinetic equation (CEKE) —
so closures and transport they induce are consistent with these FSA transport equations,

paleoclassical n, Ωt (→ Eρ), ps diffusion and pinch effects are included naturally; and

poloidal flux transients (ψ̇p 6= 0) induce radial motion of n, Ωt (→ Eρ), ps.
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Tokamak Plasma Transport Equations Include Many Effects

•With sources of n, Lt ≡ ρm〈R2〉Ωt and ps, transport equations are10

density
1

V ′
∂

∂t

∣∣∣∣
ψp

neV
′ + ρ̇ψp

∂ne

∂ρ
+

1

V ′
∂

∂ρ
(V ′Γ) = 〈Sn〉,

tor. mom.
1

V ′
∂

∂t

∣∣∣∣
ψp

LtV
′ + ρ̇ψp

∂Lt

∂ρ
+

1

V ′
∂

∂ρ
(V ′Πρζ) = 〈~eζ ·

(
~J× ~B − ~∇·

↔
Π + ~Sp

)
〉,

energy
3

2
ps
∂

∂t

∣∣∣∣
ψp

ln psV
′5/3 +

3

2
ρ̇ψp

∂ps

∂ρ
+

1

V ′
∂

∂ρ
(V ′Υs) + 〈~∇· ~qpcs∗〉 = Qsnet.

• There are many classes of effects in plasma transport equations:

transients in the poloidal flux ψp via ∂/∂t|ψt and advection of ψp surfaces
relative to the toroidal-flux-based radial coordinate ρ via ρ̇ψp ≡ ψ̇p/ψ

′
p,

transport fluxes of ambipolar density Γ, total momentum Πρζ and heat Υs, ~q
pc
s∗

“radially” across ψp axisymmetric poloidal flux surfaces with many terms
induced by collision and micro-turbulent processes in each species s,

ambipolar density 〈Sn〉, toroidal momentum 〈~eζ · ~Sp〉 and energy 〈Sε〉 sources
with energy sources contributing to net energy heating rate Qsnet, which
also includes external heating sources (NBI, ECH etc.) & radiation losses,

and toroidal torques on the plasma caused by ~J× ~B & viscous stresses ~∇·
↔
Π.

•We’ll now focuses on recent developments: small 3-D field effects.
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3-D Field Effects In Tokamak Plasma Transport Equations

•With sources of n, Lt ≡ ρm〈R2〉Ωt and ps, transport equations are10

density
1

V ′
∂

∂t

∣∣∣∣
ψp

neV
′ + ρ̇ψp

∂ne

∂ρ
+

1

V ′
∂

∂ρ
(V ′Γ) = 〈Sn〉,

tor. mom.
1

V ′
∂

∂t

∣∣∣∣
ψp

LtV
′ + ρ̇ψp

∂Lt

∂ρ
+

1

V ′
∂

∂ρ
(V ′Πρζ) = 〈~eζ ·

(
~J× ~B − ~∇·

↔
Π + ~Sp

)
〉,

energy
3

2
ps
∂

∂t

∣∣∣∣
ψp

ln psV
′5/3 +

3

2
ρ̇ψp

∂ps

∂ρ
+

1

V ′
∂

∂ρ
(V ′Υs) + 〈~∇· ~qpcs∗〉 = Qsnet.

• Small 3-D field (|δ ~B|/B0 ∼ %∗) effects come about in many ways:11

externally applied resonantm/n ' q and non-resonant fields cause field error

(FE, 〈~eζ · ~J× ~B〉) and neo. toroidal viscous (NTV, 〈~eζ ·~∇·
↔
Π〉) damping of Ωt,

toroidal magnetic field “ripple” caused by the finite number of coils
that produce the toroidal magnetic field which damps Ωt via NTV,

externally applied edge resonant magnetic perturbations (RMPs) used to
modify the pressure profile there and stabilize edge MHD instabilities, and

spontaneous magnetic perturbations in the plasma which are caused by
extended MHD macroscopic plasma instabilities that are under control,
e.g., neoclassical tearing modes (NTMs) or resistive wall modes (RWMs).

11J.D. Callen, topical review on “Effects of 3D magnetic perturbations on torodal plasmas,” Nucl. Fusion 51, 094026 (2013).
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Plasma Toroidal Rotation Equation Provides 3D Context

• Magnetic field magnitude will be represented in ψp, θ, ζ coordinates by

| ~B| = | ~B0(ψp, θ)|︸ ︷︷ ︸
2D, axisymm.

+
∑
n,m

δBn(ψp,m) cos (mθ − nζ − ϕm,n)︸ ︷︷ ︸
low m,n resonant, non-resonant

+ δBN(ψp, θ) cos(Nζ)︸ ︷︷ ︸
medium n, ripple

+ · · ·︸︷︷︸
µturb.

.

• On µs time scale compressional Alfvén waves enforce radial force balance:

Ωt ≡ ~Vi ·~∇ζ = −
(
∂Φ0

∂ψp

+
1

niqi

∂pi

∂ψp

)
+ q ~V i ·~∇θ =⇒ Vt '

Eρ

Bp

−
1

niqiBp

dpi

dρ
+
Bt

Bp

Vp.

• On the ms time scale poloidal flow is damped to Vp ' (cp/qi)(dTi/dψp) + · · · .

• Toroidal plasma torques cause radial particle fluxes: ~eζ·~Force = − qs~Γs·~∇ψp.

• Setting the total radial plasma current induced by sum of the non-ambipolar

particle fluxes to zero yields transport equation7,8 for plasma toroidal angular

momentum density Lt ≡
∑

ionsmini〈R2~V i ·~∇ζ〉, Ωt(ρ, t) ≡ Lt/mini〈R2〉 :

∂Lt

∂t︸︷︷︸
inertia

' −〈~eζ ·~∇·
↔̄
π

3D

i‖ 〉︸ ︷︷ ︸
NTV from δB

+ 〈~eζ· δ ~J×δ ~B〉︸ ︷︷ ︸
resonant FEs

− 〈~eζ·~∇·
↔̄
πi⊥〉︸ ︷︷ ︸

cl, neo, paleo

−
1

V ′
∂

∂ρ
(V ′Πiρζ)︸ ︷︷ ︸

Reynolds stress8

+ 〈~eζ ·
∑

s
~̄Sps〉︸ ︷︷ ︸

mom. sources

.

• Radial electric field for net ambipolar transport is determined by Ωt:

Eρ ≡ − |~∇ρ| ∂Φ0/∂ρ ' |~∇ρ| [ Ωtψ
′
p+(1/ni0qi) dpi/dρ− (cp/qi) dTi/dρ], ωE ' −Eρ/RBp.
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SUMMARY

• At present a GRAND UNIFIED TOKAMAK SIMULATION (GUTS)?

— for developing “predictive capability” for ITER — seems to require us to:

use small gyroradius expansion to order various tokamak physics effects, especially those
in the radial, parallel, and toroidal components of the species force balance equation,

use extended MHD to check macrostability, obtain ~B field structure including plasma
responses to 3-D fields, reconnecting regions and stochastic fields near separatrix X points,

determine microturbulence by solving the CEKE in this “distorted” ~B field geometry and
produce the collision- and microturbulence-induced closures and radial transport fluxes,

solve resultant tokamak plasma transport equations simultaneously for ne, Ωt (Eρ), ps, and

then iterate these extended MHD, CEKE, closures and transport steps for self-consistency.
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What Should CEMM Do Now?

• Kinetics: Develop general Chapman-Enskog-type kinetic equa-
tion in 6D phase space with only small gyroradius expansion,
then develop drift-kinetic and perhaps gyrokinetic versions of it.

•Magnetic geometry: Adopt 2D ~B0 plus small δ ~B philosophy.

• Viscous stresses: Develop both simple analytic-based and com-
putational procedures for parallel viscous stresses and the forces
they introduce in extended MHD.

• Extended MHD: Add parallel viscous stresses into extended MHD
equations and then use them to begin exploring poloidal flow
damping and toroidal rotation Ωt effects on δ ~B fields.

• Connect with gyrokinetics: Develop some benchmark “test prob-
lems” that can be used to explore to what degree gyrokinetics
can be used to “do everything” or should couple with extended
MHD and fluid-moment-based transport equations.
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Supplementary Material
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How Do Collisions Affect Linear Landau Damping?

• The classic theoretical plasma physics issue is the damping of a
linear wave for which Landau obtained a time-asymptotic solution
using a Laplace transform procedure to introduce irreversibility.

• Landau damping has been observed experimentally and is often
thought of as a collisionless ?, entropy-producing process because

collisions are neglected in obtaining it (Vlasov equation is used, ν <∼ 10−4 ωp),

damping rate γL ∼ 10−2 ωp does not depend on the collision frequency, and

wave damping would seem to imply temporal irreversibility.

• However, temporal irreversibility and entropy production in Lan-
dau damping must be due to a collisional process because

wave transfers its phase information to the perturbed distribution, whose

continued presence is demonstrated by second wave causing a nonlinear echo,

but when sufficient collisions are introduced echoes are damped.

• Temporal evolution of collisional effects on linear Landau damping
have been explored: J.D. Callen, Phys. Plasmas 21, 052106 (2014).
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Scattering Decorrelates A Particle From A Wave

• Dominant effect of Coulomb collisions is to scatter a particle’s
velocity-space pitch-angle ϑ at nearly constant speed v (energy).

• A particle is resonant with a wave when its speed in the wave
direction u ≡ ~v ·~k/k matches the wave phase speed Vϕ = ω/k.

• Small pitch-angle scattering δϑ ∼
√

2 ντ decorrelates u from Vϕ.

Vϕ
ϑ

u

v
ϑδ

k

Figure 4: Thick arrows indicate small Coulomb collisional scattering δϑ of the pitch-

angle ϑ0 about ϑ for two (black, red) particle speeds v. Wave phase speed in ~k

direction is Vϕ ≡ ω/k. Particles with u ≡ ~v ·~k/k = Vϕ are resonant with wave.
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Discussion Of Collisional Effects On Landau Damping

• In plasmas which are always intrinsically weakly collisional:

collisionless propagator δ[~x− ~x0 − ~v0τ ] is replaced by Green function Gν,

which causes u/(u− Vϕ) singularity to be replaced by Iν integral

that collisionally limits minimum resonance width with a νeff ∼
√
ων � ν, and

whose t� 1/νeff limit yields Landau prescription for resolving singularity.

Thus, Laplace transform is neither needed nor appropriate in most plasmas.

•While collisional analysis does not change the Landau damping
rate, it facilitates temporal analysis of plasma response to a wave:

temporally reversible response for t� 1/νeff ,

irreversible, dissipative, resonance broadening response for t >∼ 1/νeff , & finally

collisional justification of Landau resolution of u = Vϕ singularity for t� 1/νeff .

• Taking t → ∞ limit in collisionless (ν → 0) response is incom-
patible with t� 1/νeff requirement for collisionless response
— Coulomb collisional scattering effects intervene at a finite time.
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Collisional Effects On Landau Damping (continued)

• Landau analysis of wave damping is linear theory that uses Vlasov
equation and obtains temporal irreversibility only for t→∞.

• However, it has recently been demonstrated12 that when the colli-
sionless Vlasov equation is used, obtaining temporal irreversibility
on very long but finite time scales requires nonlinear effects.

In particular, third order (echo-type responses) and higher order nonlinear
terms are required to produce heteroclinic (temporally irreversible) solutions.

Result is obtained in the spirit of Kolmogorov-Arnold-Moser (KAM) theorem.

• Combination and interplay of collisional and nonlinear effects in
temporal irreversibility in Landau damping are not clear.

Probabilistic Coulomb collision scattering effects damp echoes for t >∼ 1/νeff .

Unresolved question: how weak must collisional effects be (or how large must
wave amplitude be) so nonlinear echo interaction effects dominate as t→∞?

• Identifying cause of temporal irreversibility is crucial issue — for
physics understanding, entropy production, numerical convergence.
12C. Villani, “Landau damping,” CERMAC 2010 lectures available via http://smai.emath.fr/cemracs/cemracs10; C. Mouhot and C. Villani,

“Landau damping,” J. Math. Phys. 51, 015204 (2010); C. Villani “Particle systems and nonlinear Landau damping,” Phys. Plasmas 21, 030901 (2014).

JD Callen/CEMM meeting, New Orleans, LA — October 26, 2014, p 40


