VDE Modeling with M3D-C1

Nate Ferraro S.C. Jardin, F. Zhang

Presented at the **CEMM Meeting**

New Orleans, LA October 26, 2014

New Resistive Wall Capability In M3D-C1 Includes Wall And Vacuum Regions In Simulation Domain

3 regions inside domain:

- Vacuum $(\mathbf{J} = 0)$
- RW ($\mathbf{E} = \eta_W \mathbf{J}$)
- Plasma (Extended MHD)

Boundary conditions:

- \mathbf{v} , p, n set at inner wall

B set at outer (superconducting) wall

 There are no boundary conditions on B or J at the resistive wall

Current can flow into and through the wall

Wall

$$\mathbf{B} = \mathbf{B}_{plasma}(t) + \mathbf{B}_{coils}$$

$$\mathbf{J}_{coils} = 0$$

NM Ferraro/CEMM/October 2014

Nonlinear Calculation Recovers n = 0 Instability In DIII-D VDE Discharge

- DIII-D discharge 088806 disrupted due to "killer pellet"
 - Vertical stability was lost shortly after thermal quench
 - VDE timescale ~3 ms

Nonlinear Calculation Initialized From EFIT Reconstruction

- M3D-C1 is initialized using the reconstructed equilibrium just before TQ (t = 1720 ms)
 - Equilibrium is re-solved on M3D-C1 grid
- Nonlinear n = 0 calculation uses fairly realistic plasma parameters

- Spitzer resistivity: $S_0 \approx 6.8 \times 10^7$

- Anisotropic thermal conductivity: $\chi_{\parallel}/\chi_{\perp} = 10^6 \text{ N}$

- Anomalous perp. transport: $100 < \chi_{\perp} < 800 \text{ m}^2/\text{s}$

 RW approximates first wall, not vacuum vessel here; using "modern" first wall, different from old experiment

These Calculations Are A "First Try"; Not Suitable For Quantitative Validation

- Simulations done at low resolution
 - 5059 elements, ~320k DOFs
- $T_{SOL} \approx 100 \text{ eV} \rightarrow \eta_{SOL} \approx 1.6 \times 10^{-6} \Omega \text{ m}$
- Single-Fluid, no sources
- Wall is uniform thickness (2 cm), resistivity

NM Ferraro/CEMM/October 2014

Simulations Include Thermal Quench Stage

- A thermal collapse happens on ~100 µs timescale, due to large perpendicular thermal conductivity
 - Not caused by any MHD activity or convective transport

 At some point during the TQ, the plasma becomes vertically unstable

Calculation Shows Vertical Displacement Into Lower Divertor

- Both co-I_P and counter-I_P currents are seen in the open field-line region
- Plasma always moves to lower divertor, unlike in experiment
 - Maybe due to different wall configuration?

Timescale of VDE Scales Inversely with $(\eta_W)^{1/2}$

• Given wall thickness $\delta = 2 \text{ cm}$ and a poloidal scale length d = 50 cm, resistive wall diffusion times range from $\sim 6.5 \text{ ms}$ to $\sim 0.65 \text{ }\mu\text{s}$

 $\tau_W = \frac{\mu_0 d\delta}{1}$

VDE timescale is longer than resistive wall time

- Doesn't seem strongly affected by T_{SOL} ; need more cases

Currents in Wall and Open Field-Line Region Change with $\eta_{\scriptscriptstyle W}$

- At early stage of VDE, currents in the wall are stronger at lower $\eta_{\scriptscriptstyle W}$
- Counter- I_P currents are significantly stronger at higher η_W

Wall Currents are Mostly Inductive

- Currents are also present in the open field-line region
 - Magnitude may be an artifact of high T_e in the open field-line region
 - Current flows from plasma to wall to ensure $\nabla \cdot \mathbf{J} = 0$
- Wall currents are consistent with excluding poloidal flux

10

Current Spikes Observed Before Current Quench; Associated with Vertical Motion of Plasma

 Current spike onset is correlated with vertical motion of plasma, unlike TQ

- " I_p " here only includes all toroidal current in the plasma region, but not in the resistive wall
- Spike is significantly diminished when $\eta_W < \eta_{SOL}$

Current Spike is Associated With Loss of Counter- I_P Current In Open Field-Line Region

Max Poloidal Current in Wall Depends Weakly on η_W

- Maximum J_R occurs during current quench, when plasma is limited by lower divertor
- Maximum J_R is roughly 2–2.5 MA/m² in this case
 - Corresponds to $F_z \sim 500$ kN over ~ 50 cm of the lower divertor
- Impulse to vessel depends on η_W because time scale changes

Summary

Resistive wall model in M3D-C1 seems to be working properly in 2D

- Axisymmetric nonlinear & complex linear
- Realistic transport parameters and timescales

VDE calculations show how response currents flow in plasma and vessel

- Timescale of VDE scales roughly as $(\eta_W)^{1/2}$
- Maximum current & force in vessel is weakly dependent on η_W \rightarrow impulse decreases with η_W
- A spike in the total current in the plasma region before the CQ is associated with the plasma contacting the wall; gets smaller when $\eta_W < \eta_{SOL}$

Next step: 3D

- Axisymmetric nonlinear, with periodic non-axisymmetric linear checks
- Start 3D nonlinear calculation when non-axisymmetric instability found

