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Resistive DCON	

Ø Ideal DCON computes the MHD stability of axisymmetric toroidal plasmas.  

Thoroughly verified and validated, robust, reliable, easy to use, widely used.	


Ø Integrates the Euler-Lagrange equation for Fourier components of the normal 
displacement from the magnetic axis to the plasma-vacuum interface.  This is an 
initial value problem.	


Ø Straightforward extension to compute the outer region matching data for resistive 
instabilities converts it to a shooting method, which is numerically unstable.	


Ø Pletzer and Dewar introduced a singular Galerkin method, avoiding this problem.	


Ø We improve on their implementation with a better choice of basis functions and 
grid packing, reusing most of our existing code.	


Ø Solutions in the outer region are matched to the inner region resistive MHD model 
of Glasser, Greene & Johnson, solved by DELTAR, and a vacuum region, solved 
by Chance’s VACUUM.	


Ø We have obtained some excellent agreement with the straight-through linear 
MARS code.	
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Pletzer & Dewar References	

Ø  A. D. Miller & R. L. Dewar,  “Galerkin method for differential 

equations with singular points,” J. Comp. Phys. 66, 356-390 (1986).���
Introduces Galerkin method for singular ODEs, solves test problems.	


Ø  R. L. Dewar & A. Pletzer, “Two-dimensional generalization of the 
Newcomb equation,” J. Plasma. Phys. 43, 2, 291-310 (1990).���
Derives 2D Newcomb equations, equivalent to DCON equation.	


Ø  A. Pletzer & R. L. Dewar, “Non-ideal Variational method for 
determination of the outer-region matching data,” J. Plasma Phys. 
45, 3, 427-451 (1991).���
Solves cylindrical problem with non-monotonic q profile.	


Ø  A. Pletzer, A. Bondeson, and R. L. Dewar, “Linear stability of 
resistive MHD modes: axisymmetric toroidal computation of the 
outer region matching data,” J. Comp. Phys. 115, 530-549 (1994).���
Solves toroidal problem, PEST 3, verified against MARS code.	
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Galerkin Expansion	
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Dewar and Pletzer: 	

Linear Finite Elements on a Packed Grid	


The choice of basis functions determines 	

the rate of convergence.	
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Better Basis Functions:  
C1 Hermite Cubics 

•  Cubic polynomials on (0,1), within each grid cell. 

•  C1 continuity of function values and first derivatives 
across grid cells. 

•  Imposes boundary conditions on nonresonant solutions 
across the singular surface. 
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Better Basis Functions: 	

Singular Elements	


Ø Weierstrass Convergence Theorem: ���
Polynomial approximation uniformly convergent for analytic functions.	


Ø Large and small resonant solutions are non-analytic near the singular surface.	


Ø Supplement Hermite basis with power series for resonant solution near singular 
surface.	


Ø Evaluation of singular element quadratures with LSODE.	


Ø DCON fits equilibrium data to Fourier series and cubic splines, computes 
resonant power series to arbitrarily high order.  Recent work extends this to the 
degenerate zero-β limit.	


Ø Convergence requires that the large solution be computed to at least ���
n = 2√(-DI) terms.  PEST 3 is limited to n = 1.  Higher n required for small 
shear and high β.	




Glasser, Resistive DCON, CEMM/APS/DPP 2014 Slide 7	


Better Basis Functions:  
Adjustable Grid Packing Between Singular Surfaces 
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Layout of Basis Functions 

Resonant-Galerkin Expansion 

Variational Principle 
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Extension element (E) connecting Resonant element (R) and Normal element (N) 
allows the resonant small solution smoothly vanishes. 
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Adjustable grid packing is applied to  
the interval between each two adjacent resonant surfaces. 

8"

Hermite cubic! Small solution!
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Inner Region: Coordinates	
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Inner Region: Equations and Ordering	
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Inner and Outer Region Solutions 

Inner region solutions computed with DELTAR. 
Glasser, Jardin & Tesauro, Phys. Fluids 27, 1225 (1984). 
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Matching Conditions 

Outer region solved once in < 10 seconds. 
Inner region solved many times, 20,000 per second. 
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Chease Equilibrium, 1 Singular Surface, βN = 0.774	

Flux Surfaces	
 Safety Factor	


Pressure	
 Newcomb Criterion	
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Comparison with MARS Code, 1 Singular Surface	


DCON	

MARS	
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Eigenvalue Benchmark with MARS Code	


Greatly improved agreement due to bug fix:	

Missing factor of dV/dψ 	
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Flux Surfaces	
 Safety Factor	


Pressure	
 Newcomb Criterion	


Chease Equilibrium, 2 Singular Surfaces, βN = 0.240	
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Comparison with MARS Code, 2 Singular Surfaces	


Eigenfunction	
 Growth Rate	


Leaves something to be desired.  Another missing factor?	

Careful re-derivation in progress.	
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Multiple Complex Roots: 	

Generalized Nyquist Analysis and Deflation	


Contours in the 	

Complex s Plane	


Images in the 	

Complex det M Plane	


Zoom to the Neighborhood	

of the Origin	
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A Future Role for Matched Asymptotic Expansions	

Ø  The method of matched asymptotic expansions was introduced by Furth, Killeen, and 

Rosenbluth in order to obtain analytical results.	


Ø  Most recent work uses straight-through methods, such as M3D and NIMROD, using packed 
grids to resolve singular layers.	


Ø  Thermonuclear plasmas are in a regime where conditions for the validity of matched 
asymptotic expansion are very well satisfied.	


Ø  Resistive DCON and DELTAR provide numerical methods to do the full matching problem 
numerically and very efficiently.	


Ø  Inner region dynamics can be extended to include full fluid and kinetic treatments.	


Ø  Nonlinear effects are localized to the neighborhood of the singular layers and can be solved 
with the 2D HiFi code, exploiting helical symmetry, matched through ideal outer regions.	


Ø  Asymptotic matching and straight-through methods can complement and verify each other.	
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Future Work	

Ø Improved benchmarks vs. MARS for multiple singular surfaces.  

Discrepancy may be due to missing factors in the matching conditions.	


Ø Reconstruction of inner region eigenfunction by Fourier transformation.	


Ø More complete fluid regime model of linear inner region; Braginskii.  
Facilitated by new derivation of GGJ equations in terms of A, φ, and p.	


Ø Neoclassical inner region model, drift kinetic equation; Ramos.	


Ø Nonlinear model, NTM, with nonlinear effects localized to inner regions, 
coupled through ideal linear outer region.  2D HiFi code, helical 
symmetry.	


Ø Nonlinear verification with straight-through nonlinear codes: NIMROD, 
M3D-C1.	



