Ghost surfaces and island detection
Application to LHD and ASDEX Upgrade

S.R. Hudson
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Goal: a robust, fast construction of “magnetic”
coordinates adapted to the invariant structures of
non-integrable magnetic fields.

The geometry and chaotic structure of B is fundamental:
— geometry (e.g. curvature, shear, ) affects stability, confinement, . .
— chaotic structure (e.g. flux surfaces, chaotic fieldlines,) affects stability, confinement, . .

NON-INTEGRABLE FIELDS ARE GENERIC;
EXISTENCE OF ISLANDS & CHAOS AFFECTS ALL AREAS OF PLASMA CONFINEMENT !

Straight fieldline coordinates

(i) are extremely useful, and

(i1) can be constructed on the invariant sets

(this includes the “rational” periodic fieldlines, and the “irrational” KAM surfaces & cantori).

“Chaotic coordinates™ are based on a selection of “almost-invariant”

quadratic-flux minimizing (QFm) surfaces.
— QFM surfaces pass through the islands and “capture” the remnant invariant sets.

The fractal structure of B is absorbed into the coordinates;
— the flux surfaces are straight and the islands are “square”.



Mathematical Preliminary: Toroidal Coordinates
The magnetic field is usually given in cylindrical coordinates;
arbitrary, toroidal coordinates are introduced.

e “Inverse” coordinate transformation from (p, 0, () to (R, ¢, Z):

REZman,n(p)COS(mQ—nC), p=C( L= Z Zmn ) sin(m# — n().

e The Fourier harmonics, Ry, n(pi) & Znn(pi), of a discrete set of “coordinate surfaces” are

interpolated and extrapolated using cubic/quintic polynomials;
this works if the surfaces are smooth and well separated; 4
a regularization factor, p™/2, is included near origin.
¢
e Any coordinate transformation defines a vector transformation,
>
Bt R, Ry R¢ BP 0
_ 0
BZ — ¢p ¢’9 ¢)C B c .
B Z, Zyp 2 B
e The construction of chaotic-coordinates is iterative:

1. begin with a discrete set of (e.g. circular cross-section) surfaces that define approximate flux coordinates;
coordinate origin = magnetic axis, which is found iteratively;

construct a set of QFM surfaces = pseudo flux surfaces;
Fourier decompose each QFM surface in a straight pseudo fieldline angle;

replace coordinate surfaces with QFM surfaces;

U BN

include additional QFM surfaces; construct a hierarchy of chaotic coordinates.



Mathematical Preliminary: Vector Potential
A magnetic vector potential, in a suitable gauge,
IS quickly determined by radial integration.

1. Generally, gauge freedom allows A = Ayp(p,0,()VO+ As(p,0,()VC.
2. Vx B = A gives

\/§BZ = 0pAc — O¢Ay,
V9B~ = - OpAc,
\/EBC = 0,A9.

3. Given the magnetic field, A is quickly determined by radial integration in Fourier
space:

apAgam:n — +(\/§Bc)man7
apAC7m>n — _(\/ng)man7
and the remaining equation, \/gB* = 0ypA¢ — O¢ Ay, is satisfied if V- B = 0.

4. Hereafter, use notation A = V8 — xV.



The construction of extremal curves of the action
can be generalized to the construction of
extremizing surfaces of the quadratic-flux.

1. S= /Adl 08 /d((&@— 5p8 ),Where 95 = /9B” — p/gB°* |and a_S—HfBC VaB?|.
2. Extremal curves satisfy g—g =0, i.e. p= B?/B¢, and (3_8 — 0, i.e. § = BY/B¢.
p

3. Introduce a toroidal surface, p = P(6,(), and family of angle curves, 6,({) = a+ p(/q+ é(C),
where « is a fieldline label; p and ¢ are integers that determine periodicity; and 5(0) = 5(27rq) = 0.

0S
4. On each curve, p,(¢) = P(0,(¢), () and 0,({), can enforce 2, = 0; but generally v = — ;é 0.
0
5. The pseudo dynamics is defined by 1. the angle dynamics, § = 59 /B¢, and 2. the constraint that
the curve remains on the trial surface, p = P(6,(), i.e. p=0gP 0+ O:P.

6. Corresponding pseudo field B, = p B¢ e, + 0 B ey + Bgeg; simplifies to B, = B — z e,.

\/g

1 2
7. Introduce the quadratic-flux functional: | o = 5 / / dfd( (g—g)

8. Allowing for 0 P, the first variation is dps = //dé’d@' 0P \/g (3969 -+ BC(?C) V.



The action gradient, v, Is constant along the pseudo
fieldlines; construct Quadratic Flux Minimzing (QFM)
surfaces by pseudo fieldline (local) integration.

1. The true fieldline flow along B around ¢ toroidal periods from (6, po)

produces a mapping, ( % ) = M1 ( % ) .
Pq 0

2. Periodic fieldlines are fixed points of MY, i.e. 8, = 0y + 27, p,; = po.

3. In integrable case: given g, a one-dimensional search in p is required
to find the true periodic fieldline.

4. In non-integrable case, only the
(i) “stable” (action-minimax), O, (which is not always stable), and the

(ii) unstable (action minimizing), X, periodic fieldlines are guaranteed to survive.

5. The pseudo fieldline flow along B, = B — Lep around ¢ periods from (6y, po)

V9

produces a mapping, ( gq ) = P1 ( ;)/ ), but v is not yet known.
q 0

6. In general case: given 6y, a two-dimensional search in (v, p) is required
to find the periodic pseudo fieldline.



At each poloidal angle, compute radial “error” field
that must be subtracted from B to create a periodic
curve, and so create a rational, pseudo flux surface.

0. Usually, there are only the “stable” periodic fieldline and the unstable periodic fieldline,

true fieldlines

1. At every 6 = o, determine v(«) via numerical search so that B — v e,/,/g yields a periodic integral curve;

where « is a fieldline label.

/

pseudo fieldlines
2. At the true periodic fieldlines, the required additional radial field is zero: i.e. v(ag) =0 and v(ax) = 0.

3. Typically, v(a) ~ sm(qa)./,,.--—h T/—,f‘\ T T (Y
—_ ~v_ ~v_—

4. The pseudo fieldlines “capture” the true fieldlines; QFM surfaces pass through the islands.




Ghost surfaces, another class of almost-invariant
surface, are defined by an action-gradient flow
between the action minimax and minimizing fieldline.

oS
1. Action, S|C] = f A - dl, and action gradient, 20 = /9B’ — pBS.
C
aS A C 9 . . b 9 . ) .
2. Enforce — = 0B°—,/gB’ =0, i.e. invert § = BY/B¢ to obtain p = p(0,0,(); so that trial curve

dp
is completely described by #((), and the action reduces from S = S[p({),0(¢)] to S = S[6(()]

90(¢;T) . 95]0] | L |
= ————— |, where 7 is an arbitrary integration parameter.

or 00

3. Define action-gradient flow:

4. Ghost-surfaces are constructed as follows:

e Begin at action-minimax (“O”, “not-always-stable”) periodic fieldline, which is a saddle;
e initialize integration in decreasing direction (given by negative eigenvalue/vector of Hessian);

e the entire curve “flows” down the action gradient, 0,0 = —9yS;

e action is decreasing, 9,5 < 0; ,//[/_\
e finish at action-minimizing (“X”, unstable) periodic fieldline.
ghost surface described by x((, 7), where 7 is a fieldline label. M




Large Helical Device (LHD):
low order islands near edge
create chaotic fieldlines.

(10,5)
(10,6)

(10,7)

The magnetic field is provided by HINTZ,

(but this calculation is for the standard vacuum configuration.)

A selection of QFM surfaces iIs constructed,
shown with black lines, with periodicities:
(10,23), (10,22), (10,21), . .. (near axis)
..., (10,9), (10,8), (10,7), (10,6), (near edge)

—— i

Following slides will concentrate on edge region
between the (10,9), (10,8), (10,7), (10,6) and (10,5) islands.




Near the edge, there Is a fractal mix of low-order
Islands, high-order islands, KAM surfaces, cantorl, etc
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Step One: construct a set of high-order QFM surfaces.

Ievel l \\.; __.,.7_.'-'-""'-.__ = =

QFM surfaces that lie close to
low order separatrices

level 2

(10,6) level 3

(3019) &
(20,13) 2\

(10,7)

B e e =

Step Two: use these surfaces as coordinate surfaces . .
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poincare | /
plot.

Each ordered pair of rationals
defines a noble irrational

constructed
by interpolation F _
S s

flux Surfaces .....................................................................
are straight. [ Z 3 waw
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Poincaré
plot.

Islands become
square.
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Poincaré
plot.
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Poincareé
plot.

Edge of
confinement
region Is

not a single,
sharp barrier;

but instead
a hierarchy of

islands,
KAM, and
cantori.
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ASDEX Upgrade:
work In progress, preliminary results,
with S. Jardin, I. Krebs, . .

There is still a lot that needs to be done . .
i.  Allow for non-stellarator-symmety v’
Ii.  Constrain poloidal anglex

ii.  Interpolate coordinate surfaces without intersections x

Iv. Extrapolate into separatrix %
v.  Coordinate axis = magnetic axis %



Relevant publ Ications: http://w3.pppl.gov/~shudson/bibliography.html

Chaotic coordinates for the Large Helical Device , S.R.Hudson & Y. Suzuki
Physics of Plasmas, 21:102505, 2014

Generalized action-angle coordinates defined on island chains, R.L.Dewar, S.R.Hudson & A.M.Gibson
Plasma Physics and Controlled Fusion, 55:014004, 2013

Unified theory of Ghost and Quadratic-Flux-Minimizing Surfaces, R. L.Dewar, S. R.Hudson & A. M.Gibson
Journal of Plasma and Fusion Research SERIES, 9:487, 2010

Are ghost surfaces quadratic-flux-minimizing?, S.R.Hudson & R.L.Dewar
Physics Letters A, 373(48):4409, 2009

An expression for the temperature gradient in chaotic fields, S.R.Hudson
Physics of Plasmas, 16:010701, 2009

Temperature contours and ghost-surfaces for chaotic magnetic fields, S.R.Hudson & J.Breslau
Physical Review Letters, 100:095001, 2008

Calculation of cantori for Hamiltonian flows, S.R.Hudson
Physical Review E, 74:056203, 2006

Almost invariant manifolds for divergence free fields, R.L.Dewar, S.R.Hudson & P.Price
Physics Letters A, 194(1-2):49, 1994






Backup slides:



Physics Preliminary: Magnetic Fieldline Action
The action is the line integral, along an arbitrary curve,
of the vector potential.
= [, A -dl, along trial curve, C:p=p((),0 = Q(C).
A =yVO— V¢, dl=dpe,+dieg+dCec, A-dl= (w’ —x) dc.
e.g. = Zwm n(p) cos(mb —n¢), x = E\cm n(p) cos(mb — nq).

Numerically, a curve is represented as piecewise-constant, piecewise-linear.
p(C) 0(¢)
For ¢ € (Gim1..G)). —
p(C) = pi, )
0(C) = 0;1 +6(C—Ci). ¢ 3

where 9 = (9@ — 91—1)/AC
The {p; : ¢ =1, N} and {6; : i = 0, N} describe the curve. N is resolution. Periodicity: (nx = 27wq, 05 = 0y + 27p.

Seems crude; but, the trigonometric integrals are computed analytically, i.e. fast;

= ZNJ f w (06— x) = i S [0 8 = X (0] / "¢ cos(mb — n¢)
i=1"Gi—1 i=1 mn

i—1

Sin(mgi - nC@) — Sin(m‘gvj—l - ncfi—l) and, coordinates will be constructed in
which the periodic fieldlines are straight.

Ci
/ d¢ cos(mf —n() =



Lagrangian integration construction:
QFM surfaces are families of extremal curves of the

constrained-area action integral.
Introdu F ,9 = A-dl—v OV(-dl —a , Where p = {1pis, 0 = 10;;
troduce F(p, 8) /C (/C ¢ ) here p = {p;}, 6 = {6}

1.

2mq

where v is a Lagrange multiplier, and a is the required “area” under the curve, / 0(¢) dC.

0

An identity of vector calculus gives 6F = / dl x (V x A —vVl x V() -dl,

— extremizing curves are tangential to| B, =B —vV0 x V(=B — —e,.

C

vV

V9

The advantages of action-extremizing Lagrangian integration are:

The piecewise-constant representation for p(¢) and 0,, ' = 0 yields p; = p;(0;—1,0;), so
the trial curve is completely described by 6;, i.e. F' = F(0).

OF
o = 02Fi(0:1,0:) + 01 Fiy1(05,0:41),

The piecewise-linear representation for 6(() gives

(2
so the Hessian, V2 F(0), is tridiagonal (assuming v is given) and is easily inverted.

Multi-dimensional Newton method: 60 = — (VQF)_l - VF(0) ;
global integration, much less sensitive to “Lyapunov” integration errors.



Chaos Preliminary: The fractal structure of chaos Is

related to the structure of rationals and irrationals.

THE FAREY TREE,;
or, according to Wikipedia,
THE STERN-BROCOT TREE.

L
1

alternating path—

- r|Oo

%

_mediant @ O }1 = M (excluded region) <alternating path

do + q1

qo q1

~N -~ NN
|

0 1 1 2 1 3 2
1 4 3 5 2 5 3
1. Islands, and chaos, emerge at every rational:

I

about each rational, n/m, introduce “excluded region” with width r/mk; if excluded regions don’t overlap, then

2. KAM theorem: irrational flux surface can survive if [¢ — n/m/| > r/m" for all n, m.

~
Diophantine condition

3. Greene’s residue criterion: the most robust flux surfaces have “noble” transform:

Call ¢ strongly irrational.

noble irrationals = limit of ultimately alternating paths = limit of Fibonacci ratios;

0112 3 5 8 13 21 34 55 — — (1+V5) . 1011235 8 13 21 . —1
€.g. TJ67I9I7§:§759§7ﬁ92_1:3_47"'%VZgOldenmean: D) ; €.g. 0*1°*1°2?'3°528” 13?21’ 34* -y .




Irrational “KAM” surfaces break into cantor1 when
perturbation exceeds critical value.
Both KAM surfaces and cantori restrict transport.

1 2 1
3 < delete middle third > 3 1
| ' ' ' @)mplete barrier ]

k=)

—00 e — i — e — e —
"5 ogap o ----<partialbarrier|
— KAM surfaces are closed, toroidal surfaces

that stop radial field line transport

10° iterations —

— Cantori have “gaps” that ficldlines can pass through; ]
however, cantori can severely restrict radial transport N i

—> Example: all flux surfaces destroyed by chaos, “noble”=g | .= EPRN Vi

but even after 100 000 transits around torus ~ cantori . |___. BT o
(black dOtS) wmp | ---==., s e P

the fieldlines don’t get past cantori !

« radial coordinate —

— Regions of chaotic fields can provide some
confinement because of the cantori partial barriers. 10° iterations —




Magnetic flux surfaces are required for good
confinement; but 3D effects create “magnetic

1slands”, and 1sland overlap creates chaos.
LA = (p,0,0)V0 — x(p,0, )V = $V0 — x(1,0,0)VC,  if p= p(v,0,()

"

coordinate

2. B=Vy x V0 —-Vx(¢,0,() x V( trans formation

3. Toroidal flux: /

2m pp
B-ds :fdﬂfdw B-e, xep =27, where /g =e, -egxes = (Vip-VOx V)L
S 0 0

4. Definition of fieldline: dl >« B.

e Cartesian (x,y, z) coordinate basis: dei+dyj+dzk = B*i+ BYj+ B* k.

e Arbitrary (1,0, () coordinate basis: dy e, +df ey + d(e; = Bwew + By + Bgeg,
where BY =B -V, B’ =B-V6, B =B- V(.

Ca_de_BY_ ox 4 _do_ B’ _ ox 70 ‘
V=W TBCT o 'T A T B g N

x = poloidal flux=fieldline Hamiltonian.

(¢

It 5 + 22 > Ad), then chaos -

6. If x = x(v), ) =0and § = ¢(1): magnetic field is “integrable”,

and fieldlines lie on nested flux surfaces. /ﬁ //-\\ ﬁ
7. Generally, x = x(¥,0,¢) = >_,, ,, Xm,n(¥) cos(mb — n(), %M

and “islands” open where ml —n = 0.




Ghost surfaces are (almost) indistinguishable from
QFM surfaces; can redefine poloidal angle (straight
pseudo fieldline) to unify ghost surfaces with QFMs.

T T e L T T T /T E T T
1. Ghost-surfaces are defined by y PP AN e\ \.M RN
an (action gradient) flow. A - NN e

2. QFM surfaces are defined by

minimizing / (action gradient)?ds.

3. Not obvious if the different
definitions give the same surfaces.

4. For model chaotic field: \

(a) ghosts = thin solid lines;
(b) QFMs = thick dashed lines;>_)
(c) agreement is excellent;
(d) difference = O(e?),

where € is perturbation. /

5. Can redefine 6 to obtain

unified theory of ghosts & QFMs;
straight pseudo fieldline angle.




Isotherms of the steady state solution to the
anisotropic diffusion coincide with ghost surfaces;
analytic, 1-D solution Is possible.

1. Transport along the magnetic field is unrestricted:

e.g. parallel random walk with long steps ~ collisional mean free path.

A\
Qo
e

particle “knocked”

2. Transport across the magnetic field is very small: onto nearby field line

e.g. perpendicular random walk with short steps &~ Larmor radius.

3. Simple transport model: anisotropic diffusion, cold

KJHVﬁT + I{J_ViT =0 RJ_/HJ” ~ 10710 grid = 212 x 212,

steady state, no source, inhomogeneous boundary conditions.

4. Compare numerical solution to “irrational” ghost-surfaces |:> -

ghost-su rfacwthv@

5. The temperature adapts to KAM surfaces, cantori,
and ghost-surfaces!, i.c. T =T(p).

6. From T =T(p,0,¢) to|T = T(p) | allows an expression

for the temperature gradient in chaotic fields:
dT 1

8.8 ?
dp  Kp2+Kk1G

where 9 = /Bi ds, and G = /Vp -Vpds.
—— N—— —

quadratic flux metric




Chaotic coordinates simplify anisotropic transport

The temperature is constant on ghost surfaces, T=T(s)
1. Transport along the magnetic field is unrestricted -
— consider parallel random walk, with long steps=~ collisional mean free path A3 \' M

ﬁéﬁrticle “knocked”

onto nearby field line

2. Transport across the magnetic field is very small

—consider perpendicular random walk with short steps~ Larmor radius

3. Anisotropic diffusion balance

K Vﬁ T+ kK, Vi T=0, K> K, KL/Kh ~107° |  212x212 = 4096 x4096 grid points

(to resolve small structures)

4. Compare solution of numerical calculation to ghost-surfaces

ghost-surface | [ isotherm cold

5. The temperature adapts to KAM surfaces,cantori,
and ghost-surfaces!
I.e. T=T(S), where s=const. is a ghost-surface

from T=T(s,6,¢) to T=T(s) is a fantastic simplification, allows analytic solution |

dT 1
ds ¢ +x G

Temperature contours and ghost-surfaces for chaotic magnetic fields
S.R. Hudson et al., Physical Review Letters, 100:095001, 2008

Invited talk 22" |AEA Fusion Energy Conference, 2008

Invited talk 17th International Stellarator, Heliotron Workshop, 2009

An expression for the temperature gradient in chaotic fields
S.R. Hudson, Physics of Plasmas, 16:100701, 2009




The “upward” flux = “downward” flux across a
toroidal surface passing through an island chain can be

computed.
1. B-dS = / V -B = 0; the total flux across any closed surface of B is zero.
oV V

2. Consider “rational” surface with boundary coinciding with X and O fieldlines;

define “upward” flux ¥, ,, = / B.-dS = / A - dl — / A - dl
S O X

agé
into the P
W toroidal angl@; C, 1
upward downward

flux e flux

NK:E_:_ poloidal an_gle, 9 i‘;?%

1. Consider sequence of rationals that approach an irrational, i.e. p;/q; — ¢ as i — oo,

o if U
o if U

pi/a; — Y¢ =0, then KAM, surface exists, a perfect barrier to transport;

pi/g; — Y > 0, then ¥, quantifies flux across cantorus,, a “partial” barrier.

2. U ,, called “Mather’s difference in action”; W, quantifies strength of partial barrier.

r/q



Greene’s residue criterion: the existence of an
irrational flux surface is determined by the stability of
closely-approximating periodic orbits.

. The tangent map is defined ( ggz ) = VM1 ( ggz ) :

. The eigenvalues of VMY at periodic fieldlines determine stability:
VM1 =1; \; = 1/)Xg; if |A| > 1, unstable, exponential; if |A\| = 1, stable, sinusoidal.

. The residue is defined R/, = (2—A—A"1)/4.

. Consider sequence of rationals that approach an irrational, i.e. p;/q; — + as i — oo.

(the “best” approximations called the convergents, given by continued fractions).

If R,/ — 0, surface, exists; 05

if R,/q — i , surface, critical; and L _ super-critical

if Rp /q = 0, surface, destroyed. \\A_ x++>< +><++x
0.3F i i ’

. By cleverly searching Farey tree - N \ near-critical
[following Greene, MacKay] ) I I
can find “boundary surface” o | A S
= last, closed, flux surface. ~ sub-critical

0.0 ! 1 1 | 1 ! 1 1 1 1 1 \ e ‘FX .-..-..__f_._‘_..__?f._*_..‘_,_.__‘_
2 3 5 B 13 21 34 55 89 144233377 g _euiRie. o T

1 1
2 3 5 B 13 21 34 55 89 144233377610
p/q



The Flux Farey-tree shows the flux across the rational
surfaces; the importance of each of the hierarchy of
partial barriers can be quantified.

xpp/qE/A.dl—/ A-dl
O X

19°F FLUX FAREY TREE




To illustrate, we examine
the standard configuration of LHD

The initial coordinates are axisymmetric, circular cross section,

R =3.63+ p 0.9 cosd

L= p 0.9 sind which are not a good approximation to flux coordinates!
Poincaré plot in cylindrical coordinates Poincaré plot in toroidal coordinates

{.

cylindrical Z
radial, p

AN
W

':‘ .‘l"\

S

AN )
N

cylindrical R poloidal angle, 9



We construct coordinates that better approximate
straight-field line flux coordinates,

by constructing a set of rational, almost-invariant surfaces, e.g. the (1,1), (1,2) surfaces

"‘i.
radial, p

/ (11) —E=2

<7
L

N
=

z‘. @ I
N /
AN

AR

cylindrical Z

Y

\

cylindrical R’ 5 poloidal angle, 9

A Fourier representation of the (1,1) rational surface is constructed,
R=R(a,0)=> R, ,cos(Ma-nf

Z=2Z(0,0)=> Zy,sin(ma-ngJ), where a is a straight field line angle

838 /841



Updated coordinates:

the (1,1) surface is used as a coordinate surface.

The updated coordinates are a better approximation to straight-field line flux
coordinates, and the flux surfaces are (almost) flat
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Now Include the (1,2) rational surface
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Updated coordinates:
the (1,1) surface iIs used as a coordinate surface
the (1,2) surface iIs used as a coordinate surface
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Now include the (2,3) rational surface

Note that the (1,1) and (1,2) surfaces have previously been constructed
and are used as coordinate surfaces, and so these surfaces are flat.
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Updated Coordinates:

the (1,1), (2,3) & (1,2) surfaces are used as coordinate surfaces
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0.5

-0.5

New Coordinates, the (10,9) surface is used as the coordinate boundary

the ( 1,1) surface is used as a coordinate surface

the ( 2,3) surface is used as a coordinate surface

the ( 1,2) surface is used as a coordinate surface  poincare plot
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Straight field line coordinates can be constructed over the
domain where invariant flux surfaces exist
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Straight field line coordinates can be constructed over the
domain where invariant flux surfaces exist

(10,8) —»
(10,9)

(1.1)

0.5 -

o
P 4 v

(2.3)

cylindrical Z

0.4

05 |

1.2) >

25 I3 - 3I‘5 ) l‘ 4l'5 l , OZOZdaSl an le‘i '9
cylindrical R P ¢

Near the plasma edge, there are magnetic islands, chaotic field lines.
Lets take a closer look . . . ..




Now, examine the “edge” . . ..
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Near the plasma edge,
there are magnetic islands and field-line chaos

But this is no problem. There is no change to the algorithm!
The rational, almost-invariant surfaces can still be constructed.
The quadratic-flux minimizing surfaces =~ ghost-surfaces pass through the island chains,
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radial, p
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Now, lets look for the ethereal, last closed flux surface.

(from dictionary.reference.com)

e-the-re-al [ih-theer-ee-uhl]

Adjective

1.light, airy, or tenuous: an ethereal world created through the poetic imagination.
2.extremely delicate or refined: ethereal beauty.

3.heavenly or celestial: gone to his ethereal home.

4.of or pertaining to the upper regions of space.
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Perhaps the last flux
surface is in here
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Hereafter, will not Fourier decompose the almost-invariant surfaces and use them as coordinate surfaces.

This is because they become quite deformed and can be very close together,
and the simple-minded piecewise cubic method fails to provide interpolated coordinate surfaces that do not intersect.
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To find the significant barriers to field line transport,
construct a hierarchy of high-order surfaces,
and compute the upward flux
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The construction of chaotic coordinates simplifies anisotropic diffusion
9T

—_— =V- (K“V”T + KJ_VJ_T) + 0, %\gf\,ﬁj\w
% -

ot

particle “knocked”
onto nearby field line

In chaotic coordinates, the temperature becomes a surface function, T=T(s),
where s labels invariant (flux) surfaces or almost-invariant surfaces.

dT C

If T=T(s), the anisotropic diffusion equation can be solved analytically, = ,
dS K@ + KJ_G

where ¢ is a constant, and

¢= J J d0dd\gB,. s related to the quadratic-flux across an invariant or almost-invariant surface,

G = J J d0ddgg™, isa geometric coefficient.

An expression for the temperature gradient in chaotic fields

S.R. Hudson, Physics of Plasmas, 16:010701, 2009

Temperature contours and ghost-surfaces for chaotic magnetic fields
S.R.Hudson and J.Breslau

Physical Review Letters, 100:095001, 2008

When the upward-flux is sufficiently small,
so that the parallel diffusion across an almost-invariant surface is comparable to the perpendicular diffusion,

the plasma cannot distinguish between a perfect invariant surface and an almost invariant surface



Chaotic coordinates “straighten out” chaos

Poincaré plot of chaotic field

Poincareé plot of chaotic field
(in action-angle coordinates of unperturbed field)
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new radial coordinate —

new angle coordinate —

phase-space is partitioned into (1) regular (“irrational”) regions  with “good flux surfaces”, temperature gradients
and (2) irregular (“ rational”) regions with islands and chaos, flat profiles

Generalized magnetic coordinates for toroidal magnetic fields
S.R. Hudson, Doctoral Thesis, The Australian National University, 1996




