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•  For certain parameters, regardless of initial state, plasma will go into 
a “self-organized” state with q = 1 +  in a central volume 
 
•  This large shear-free region is unstable to interchange modes for any 
pressure gradient and the instability will drive a strong (1,1) helical 
flow. 
 
•  This flow does not affect the magnetic field evolution since it has 
the property that : 
 
 
•   However, the driven flow is a dominant term in the Temperature 
evolution equation and dominates over the thermal conductivity in 
the center of the discharge where q is flat. 
 
•  The net effect is to keep the central temperature (and resistivity) flat 
so that the resistive steady state is such as to preserve the self-
organized state with q = 1 +  in a central volume. 
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3D Extended MHD Equations 
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Kinetic closures extend these to include neo-classical, energetic particle, and 
turbulence effects. 3 
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We are using M3D-C1 to solve the MHD equations to compute the self-
consistent long-time (transport timescale ) behavior of a tokamak 
discharge subject to: 

 
•  loop voltage (IP controller) 
•  density source (ne controller) 
•  heating source (NB) 
•  momentum source (NB) 
•  shaping fields 

•  resistivity   
•  viscosity   
•  thermal conductivity    &   

•  particle diffusivity  D 
•  ion-skin depth di = c/pi 
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Standard transport model: 
 
 
 
 
 Initial conditions have q0 < 1, so one sawtooth always occurs. 
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When does the tokamak go into a stationary state and what are its 
properties?   What is the relation to sawteeth? 



Example:  =2%   S=106 
--  oscillations die out to form stationary state 
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Large region in center with q = 1 +  

CMOD15  =10 
Also,  see 
CMOD02 
CMOD11 
CMOD35 

At higher values of  , periodic oscillations die out and a 
stationary interchange mode develops with q just above 
1 in a large volume near the axis   (S = 106) 



Central poloidal flow flattens current profile 
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 = 00  = 900  = 1800  = 2700 

q = 1.01 

Contours of poloidal velocity stream function U at final time 
shows a clear (1,1) structure that is stationary in time. 
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 = 00  = 900  = 1800  = 2700 

Hill’s vortex like flow pattern in center 

This stationary flow pattern is being driven by the 
interchange instability.    It is also acting to 
flatten the temperature and current profiles to 
keep the central q=1 region stationary in time. 



Large shear-free region near axis 

Minor Radius
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1.00 < q < 1.01 in inner 1/3 of minor radius  (1/9th of volume) 
qmin  = 1.000      slight reversed shear near axis 
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Term’s in Ohm’s law for stationary state with q = 1 +  
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Large V x B flow generated by interchange 
instability is canceled in Ohm’s law equation by 
the gradient of the scalar potential  

Run35 

q = 1.01 





Magnified view of mid-plane values of terms in Ohm’s law 

ˆt R          V B J  ˆt R     J

While J has some spatial variation,  the other terms combine to 
make the time derivative of  a spatial constant (stationary state). 
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S01-slice118-60o 
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(-1)TV 

VT 

(-1)TV 
   + VT 

U   total 

Run35RRe,51,phi=335,rrange=[2.925,3.7],zrange=[-.425,.425], +-6.1e-6    

      2 2 2R U R RV

Decomposition of velocity field in M3D-C1:  3 components but V=0  



Analysis of terms in temperature equation near magnetic axis 
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Take the stream function to be the (cylindrical) unstable eigenmode found in [1]:   

[1] Hastie and Hender, NF 28 (1988) p. 585  “Toroidal internal kink stability in tokamaks with ultra flat q profiles” 

Assuming constant source, and balancing the first and last terms in (2) 

q(r) is flat 
interior to 
radius r1 
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Analytic formula give reasonable agreement with code results 
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Scaling of driven flow with source and sink terms 

Major Radius
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  and   doubled Base case 

Electrostatic potential and flow velocity scale with the size of the source and sink terms 
in the temperature equation in this regime.  Need to extend to more extreme regimes. 
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Scaling of driven flow with viscosity 

610 10   65 10   62.5 10  

Contours of V T in stationary state 

Final state has very little dependence on value of viscosity (same color 
scale in the 3 plots) 



Scaling of driven flow with beta 

The kinetic energy in the driven flow does depend on the plasma beta.   
For small enough beta, the system exhibits periodic oscillations (sawteeth). 
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JADV=0: 
Time advance poloidal 
flux and solve elliptic 
equation for electro-
static potential 

JADV=1: 
Time advance 
toroidal current 
density 

M3D-C1 has two options for advancing the poloidal field.   
Results were essentially identical for the two modes.  

Definitions: 

 , ,  are
cylindrical 
coordinates

R Z
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Convergence Tests 
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Results identical 

n=1 and n=2 
modes almost 
identical.   Some 
difference in 
(small) higher-n 
modes 
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•  For certain parameters, regardless of initial state, plasma will go into 
a “self-organized” state with q = 1 +  in a central volume 
 
•  This large shear-free region is unstable to interchange modes for any 
pressure gradient and the instability will drive a strong (1,1) helical 
flow. 
 
•  This flow does not affect the magnetic field evolution since it has 
the property that : 
 
 
•   However, the driven flow is the dominant term in the Temperature 
evolution equation and dominates over the thermal conductivity. 
 
•  The net effect is to keep the central temperature (and resistivity) flat 
so that the resistive steady state is such as to preserve the self-
organized state with q = 1 +  in a central volume. 
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To do 
•  dependence on resistivity and neoclassical effects 
•  dependence on form of thermal conductivity profile  and heating source S 

•  dependence on beta (more systematic) 
•  dependence on 2F terms 
•  dependence on size of || 

•  dependence on sheared rotation 
•  dependence on error fields 
 
•  relation to hybrid modes in DIII-D and ASDEX-U? 
•  can we combine transport and stability analysis? 
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Extra Viewgraphs 
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Typical periodic oscillations S=106, =.001 
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CMOD 16G 

Fast Te crash on 
first ST only 

Blowup on 
next vg 

At low , low S, 
resistive MHD 
plasma exhibits 
periodic 
oscillations, but 
does not show 
repeating fast Te 
crashes  



22 

q0=.97 

Kadomsev complete reconnection S=106 =.001 
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Resistivity scan:   = .001, no rotation 
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• q0 decreases from 0.05 to < 0.01 as  decreases : 
 
• Complete Kadomsev reconnection does not occur at high S 
 
• Evidence of incomplete reconnection but fast Te crash at high S (2F) 

CMOD07   = 10 E-5 
CMOE09    = 10 
CMOD29   = 2.5 
CMOD1E  = 1.0 

•  period gets longer as  
gets smaller as -0.43 
 

•  kinetic energy per event 
decreases as  

  



Comparison of resistive MHD and 2F MHD 
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Two-fluid terms change the initial behavior, but not the long-
time behavior of repeating sawteeth at low  and low S=106. 

CMOD16G 
CMOD25G 

Still, fast 
crash on 
first ST only 

Two simulations with same =.001 and S=106:  with and without 2F terms 
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