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SIMULATIONS EMPOWERING
YOUR INNOVATIONS




¥ Computations with low resolution reconstructions may
be corrupted by the input file resolution.
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* Fluxgrid currently maps g from
the reconstructed grid onto the
NIMROD grid.

 Low resolution reconstructions
can lead to small scale artifacts in
the equilibrium.

- In particular, the extended-MHD
operators, many of which involve
high-order derivatives, seem to be
sensitive to these artifacts.

* Figure: Toroidal current mapped
to a 72x512pd4 NIMROD grid
from a 128x128 reconstructed
EFIT grid where FE calculations
are used to compute J from y.




& An new utility, FGNIMEQ, allows one to re-solve the
Grad Shafranov equation to obtain high quality fields.
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x Using FGNIMEQ, we can now converge on extended-
TECH- MHD cases that were previously problematic.

« FGNIMEQ uses the mapped y as a boundary condition
and splines of the reconstructed profiles for p and F and
re-solves the Grad Shafranov equation with NIMEQ
[Howell and Sovinec, CPC 185, 1415 (2014)].

- The extension for FGNIMEQ is the inclusion of an open
flux region and coupling to FLUXGRID.

* The goal is to minimally change the macroscopic
equilibrium.

|t has enabled the linear runs of this presentation which do
not use any hyper-diffusivities or stabilization methods.

« See my poster (Monday morning) for more details on
FGNIMEQ.



=" Tokamak operation with edge harmonic oscillations
(EHQO) provides access to a quiescent H-mode regime

TECH-X [Burrell 2012].

EHO is characterized by a small
toroidal mode number (n~1-5)
perturbation localized to the magnetic ..
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x The physical mechanisms of EHO are not fully
TECH-){ understood.

Linear MHD calculations
suggest EHO may be a
saturated kink-peeling mode
partially driven by flow-profile
shear [Snyder 2007].

It is hypothesized that the
saturated mode drives
sufficient particle and thermal
transport to maintain steady
state pedestal profiles.
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We analyze DIII-D shot 145098 at 4250 ms while the
TECH-) discharge is ELM free with broadband EHO.
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x We study a reconstruction of this discharge with
T1ECH-) varied NIMROD runs.

* Model variations (effects are additive)

Resistive MHD with parallel closures (par): Density
profile, Spitzer resistivity, P_=1, x.=0.1n/H,,
D,=0.1n/u,, parallel viscosity v ,=8.6e5m?/s, parallel
thermal conduction X =1e7/m?/s.

lon gyroviscosity (gyr)
Two fluid (2fl): generalized Ohm's law

Separate temperature evolution (2t): cross heat fluxes
included.

« Bootstrap current variations: reduced/full

« Flow effect variations: V_ 5, V

oo @Nd V. can be included.
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FGNIMEQ allows modeling that was not previously

TECH-)!{ Possible and makes other cases more robust.
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x lon gyroviscosity alone is stabilizing; many drift-
TECH-){ ordered terms are neglected with this model.
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x Two fluid modeling captures large stabilizing drift effects.
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x Extended-MHD modeling does not produce macroscopic changes in the
mode structure.
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2t | 2t
BR Pressure

n=95 \




x Going forward we intend to focus on modeling cases
TECH-): With flow and nonlinear dynamics.

veg = f,K, (1) B QpypRO—fvpQvyRé
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* We can vary the each contributions flow profiles, here we run cases with and
without the ExB flow contribution.

» Profiles are shown for fp — fExB = fvp =1.

* Flows are specified by the reconstruction up to the separatrix and

extrapolated to zero beyond the separatrix. The extrapolation methods are a
work in progress.
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Flow effects stabilize the intermediate toroidal mode

TECH-! number modes.
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 ELITE results on previous
slide had high-n stabilization
(n=35-60) and intermediate-n
destabilization (n=8-15).

- However these results are not
from the same reconstruction!

50% bootstrap current



x Including the full bootstrap current destabilizes the
TECH-)! low-n modes and stabilizes the high-n modes.

« The n=5 mode is unstable
with a full BS current and a
parallel flow model but
stable with the same model
and 50% BS current.

» The safety factor has
reversed shear at full BS
current, and low
destabilization is expected
[Zhu et al. PoP 19, 022107
(2012)].

* Future work will concentrate
on combining the two-fluid,
two-temperature modeling
with flow profiles (which also
will include a diamagnetic
flow that enters as a drift-
ordered effect).
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x Additional modeling is required.
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model variation
-
RMHD par gyr 2fl 2t
=
= high-n spectrum spectrum peaked at n~=15,
2 drift effects stabilizing at high n
n
§|3
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X Summary
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 FGNIMEQ is a new utility that re-solves the Grad
Shafranov equation for high-quality fields.

- It is particularly useful for edge cases and low resolution
reconstructions.

* With this new capability we are now able to run
extended-MHD cases with the EHO reconstructed
equilibrium.

* We find flow effects are stabilizing and
iIntermediate n, and drift effects from extended-
MHD are stabilizing at high n.
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