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Hybrid-type instabilities
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 Neoclassical physics plays important role in many 
magnetohydrodynamic (MHD) instabilities

 Bootstrap current effects:
 Neoclassical tearing modes (NTMs)

 Sawtooth oscillations

 Peeling-ballooning & edge-localized modes (ELMs)

 Neoclassical toroidal viscosity (NTV) torque impacts 
plasma rotation
 Resistive wall modes

 Locked modes

 High-fidelity simulations of these instabilities must 
incorporate both physical models



Framework for hybrid solver
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 Use existing MHD time-evolution code (e.g., M3D-
C1, NIMROD) to evolve the Maxwellian dynamics

 New drift–kinetic equation (DKE) solver needed to 
solve for the non-Maxwellian dynamics
 Self-consistency with MHD equations

 Time-dependent

 Full Fokker-Planck-Landau collision operator

 Continuum model

 Three-dimensional toroidal geometry

 Moments of DKE solution used to close MHD 
equations



Ramos form of DKE
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 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides 
analytic framework for a neoclassical solver appropriate 
for core plasma instability simulations

 DKE evolves          , difference between full gyroaveraged 
distribution function and shifting Maxwellian 

 Small parameters for high-temperature fusion plasmas  

 Important properties:  
 Maintained to collisional inverse timescale of

 Conventional neoclassical banana regime for electrons 

 Velocity      referenced to each species’ macroscopic flow

 Perturbed distribution function carries no density, parallel 
momentum, or kinetic energy (Chapman-Enskog-like)



Overview of new code:  DK4D
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 Some simplifications from full Ramos formulation
 Ion & electron DKEs to first-order in Larmor radius parameter

 Axisymmetric geometries

 Equal ion and electron temperature
 No external heat sources to drive a difference

 Pressure and temperatures are flux functions

 These assumptions will be relaxed in future work, 
allowing for:
 Ion DKE to second-order in Larmor radius parameter

 Non-axisymmetric geometries with islands

 Separate but comparable temperatures

 Parallel temperature and density gradients



Steady-state benchmarks

 Successful convergence 
and Sauter benchmark 
studies for DK4D have 
been published
 2014 Ph.D. thesis, 

Princeton University

 Associated PoP special 
edition paper

 Cross-code benchmark 
with NEO, NCLASS, and 
NIMROD
 See forthcoming Phys. 

Plasma by E. Held et al.
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Hybrid iteration scheme
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Evolve DK4D to get 
(possible steady-state) 
distribution function  
for given magnetic 

configuration

Take moments to get 
necessary closures for 

MHD equations 

(e.g., friction force)

Evolve MHD equations 
to get new magnetic  
configuration using 
extended MHD time 

evolution code



1D MHD test solver
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 From                               ,                                                  , we

can show that                        where                                     ,

, and

 Assume a large aspect ratio, expansion equilibrium, 
enforced at each time step

 Proportional-integral-differential (PID) current 
controller applies loop voltage at edge

 Rotational transform advance and Grad-Shafranov 
solve with finite difference methods



Ohm’s laws
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 Three considered

 Resistive:

 Steady-state neoclassical:

 Drift-kinetic (from stationary electron momentum eq.)

 Pressure anisotropy and collisional friction force are 
moments calculated from DK4D solutions

 Only resistive can be treated fully implicitly

 For stability, we use



Current ramp-up
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 Ramp-up of toroidal 
current from one 
fixed value to 
another over time

 Current controller 
maintains value 
close to set point

 Several density and temperature profiles 
considered
 Flat, stationary density and temperatures

 Increasing 𝛻𝑛 with stationary 𝛻𝑇𝑠



No 𝛻𝑛 or 𝛻𝑇𝑠 - results
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No 𝛻𝑛 or 𝛻𝑇𝑠 - conclusions
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 Spitzer resistive case (blue)
 Peaked safety factor as current initially driven at edge

 Flat safety factor profile in steady-state due to uniform 
resistivity and no bootstrap current

 𝑉𝑟 ≈ −0.77 V

 Sauter neoclassical case (red)
 Conductivity decreases with increasing radius

 Hollow safety factor profile in steady-state

 𝑉𝑛𝑒𝑜 ≈ −0.95 V:  Larger due to higher resistivity

 DK4D drift-kinetic case (green)
 Good agreement with Sauter in space and time

 Due to long resistive time compared to collision time



Increasing 𝛻𝑛, no 𝛻𝑇𝑠 - results

14



Increasing 𝛻𝑛, no 𝛻𝑇𝑠 - conclusions
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 Spitzer resistive case (blue)

 Identical to previous except for slight modification in 
equilibrium due to pressure gradient

 Sauter neoclassical case (red)

 Flatter profiles than previous case

 Conductivity decreases with increasing radius

 Bootstrap current increases with increasing radius

 𝑉𝑛𝑒𝑜 ≈ −0.85 V:  Smaller since there is non-inductive 
current

 DK4D drift-kinetic case (green)

 Again, very good agreement with Sauter in space and time

 No change made to Ohm’s law



ELM-like pressure collapse
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 Current ramp simulations showed good agreement 
between Sauter and DK4D since timescales were slow 
compared to collision time

 Preliminary work being done on quickly-evolving equilibria
 Here we examine two ELM-like pedestal pressure collapses

 Both have same configuration in general

  ν =  τ𝑡𝑟𝑎𝑛𝑠𝑖𝑡 τ𝑐𝑜𝑙𝑙 = 7.64 × 10−3

  τ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 τ𝑐𝑜𝑙𝑙 = 2.62 × 104

 Timescale of collapse differs
 Slow collapse:  0.01 τ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 or 262 τ𝑐𝑜𝑙𝑙

 Fast collapse:  0.001 τ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 or 26.2 τ𝑐𝑜𝑙𝑙

 Time steps are 1/10 of pedestal collapse times
 DK4D reaches steady-state during each “slow collapse” time step 
 Doesn’t necessarily during “fast collapse” time step



Pressure profiles
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Bootstrap current over time
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 Both of the “slow 
collapses” and Sauter’s
“fast collapse” all 
increase rapidly during 
ELM

 DK4D’s “fast collapse”

 Lags behind

 Continues increasing 
after ELM 

 Takes time to 
collisionally equilibrate



State of this work
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 DK4D has some capabilities beyond other existing 
continuum DKE solvers
 Time-dependent
 Solves for distribution function
 Solves in reference frame of macroscopic flow
 Straight-forward, self-consistent coupling with MHD equations

 Hybrid simulations are first of their kind
 Dynamic evolution of distribution functions and ohmic & 

bootstrap currents in changing magnetic equilibrium
 In slowly-evolving equilibria, one steady-state solution is self-

consistently evolved to the next, verifying use steady-state 
neoclassical Ohm’s laws

 In quickly-evolving equilibria, preliminary DK4D hybrid 
simulations demonstrate lag compared to steady-state model



Future work
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 Improve and extend DK4D

 Investigate alternate (better?) representations 

 Finite elements in 𝑦 and 𝜃 to improve convergence at low 
collisionality

 Non-axisymmetric geometries

 Couple to more advanced MHD code, e.g., M3D-C1

 Perform self-consistent simulations of 3D MHD 
instabilities and calculations of NTV torque



Additional slides21



Axisymmetric drift-kinetic equations
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 Axisymmetric 4D phase space
 is poloidal flux per radian,     is the poloidal angle
 is the total velocity in frame of macroscopic flow
 is cosine of the pitch angle

 Cross-species collisional terms dropped for ions



Collision operator
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 Linearized Fokker-Planck-Landau form

 Poisson equations for the Rosenbluth potentials



Time advancement of electron DKE
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 Implicit, homogeneous convective and collision operator terms 

 Explicit, homogeneous moment terms
 No stability constraints expected since these are integrals over the solution

 Predictor-corrector option available

 Inhomogeneous drive terms



Expansions in DKE
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 Velocity

 Finite elements for

 Hermite cubics

 Cubic B-splines

 Pitch angle

 Legendre polynomials in 

 Configuration Space

 is just a parameter (each flux surface treated locally)

 Fourier modes in



DKE solution method
26

 Poisson equations for Rosenbluth potentials solved 
simultaneously with DKE at each time step

 Galerkin method creates a sparse, block diagonal matrix in

 Each block contains information on     and θ derivatives
 Two solver options implemented 

 PETSc (typically with MUMPS)
 Sparse banded matrix using ScaLAPACK



Timescales

 Distribution function will likely evolve to steady state 
within a resistive time

 Must consider full time dependence as MHD code 
time steps (10-100 Alfven times) can be less than the 
electron collision time
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Equilibria used
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 From the JSOLVER equilibrium code

 Large Aspect Ratio

 NSTX



Calculating Sauter-like coefficients
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 When run to steady-state, we can calculate the 
neoclassical conductivity and bootstrap current 
coefficients for an equilibrium

 Must separate inhomogeneous source terms in DKE

 Coefficients given by collisional friction force and 
pressure anisotropy via parallel Ohm’s law

where 



Conductivity and 𝐿31 benchmark
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𝐿32 and 𝐿34 benchmark
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Ion flow coefficient benchmark
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Increasing 𝛻𝑛, stationary 𝛻𝑇𝑠 - results
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Increasing 𝛻𝑛, stationary 𝛻𝑇𝑠 - concls.
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 Spitzer (green) now has nonuniform resistivity

 Sauter (red) and DK4D (green) are, again, in good 
agreement

 Spitzer also now in good agreement

 Coincidental near-balancing of neoclassical conductivity 
and bootstrap current effects

 Lower resistivity on-axis leads to more realistic 
hollow safety factor profiles

 𝑞𝑎𝑥𝑖𝑠 ≈ 1.5, 𝑞𝑒𝑑𝑔𝑒 ≈ 2

 𝑉𝑛𝑒𝑜 ≈ −0.38 V:  Much lower due to lower resistivity


