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Hybrid-type instabilities
3

 Neoclassical physics plays important role in many 
magnetohydrodynamic (MHD) instabilities

 Bootstrap current effects:
 Neoclassical tearing modes (NTMs)

 Sawtooth oscillations

 Peeling-ballooning & edge-localized modes (ELMs)

 Neoclassical toroidal viscosity (NTV) torque impacts 
plasma rotation
 Resistive wall modes

 Locked modes

 High-fidelity simulations of these instabilities must 
incorporate both physical models



Framework for hybrid solver
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 Use existing MHD time-evolution code (e.g., M3D-
C1, NIMROD) to evolve the Maxwellian dynamics

 New drift–kinetic equation (DKE) solver needed to 
solve for the non-Maxwellian dynamics
 Self-consistency with MHD equations

 Time-dependent

 Full Fokker-Planck-Landau collision operator

 Continuum model

 Three-dimensional toroidal geometry

 Moments of DKE solution used to close MHD 
equations



Ramos form of DKE
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 J.J. Ramos (Phys. Plasmas 2010 & 2011) provides 
analytic framework for a neoclassical solver appropriate 
for core plasma instability simulations

 DKE evolves          , difference between full gyroaveraged 
distribution function and shifting Maxwellian 

 Small parameters for high-temperature fusion plasmas  

 Important properties:  
 Maintained to collisional inverse timescale of

 Conventional neoclassical banana regime for electrons 

 Velocity      referenced to each species’ macroscopic flow

 Perturbed distribution function carries no density, parallel 
momentum, or kinetic energy (Chapman-Enskog-like)



Overview of new code:  DK4D
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 Some simplifications from full Ramos formulation
 Ion & electron DKEs to first-order in Larmor radius parameter

 Axisymmetric geometries

 Equal ion and electron temperature
 No external heat sources to drive a difference

 Pressure and temperatures are flux functions

 These assumptions will be relaxed in future work, 
allowing for:
 Ion DKE to second-order in Larmor radius parameter

 Non-axisymmetric geometries with islands

 Separate but comparable temperatures

 Parallel temperature and density gradients



Steady-state benchmarks

 Successful convergence 
and Sauter benchmark 
studies for DK4D have 
been published
 2014 Ph.D. thesis, 

Princeton University

 Associated PoP special 
edition paper

 Cross-code benchmark 
with NEO, NCLASS, and 
NIMROD
 See forthcoming Phys. 

Plasma by E. Held et al.
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Hybrid iteration scheme
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Evolve DK4D to get 
(possible steady-state) 
distribution function  
for given magnetic 

configuration

Take moments to get 
necessary closures for 

MHD equations 

(e.g., friction force)

Evolve MHD equations 
to get new magnetic  
configuration using 
extended MHD time 

evolution code



1D MHD test solver
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 From                               ,                                                  , we

can show that                        where                                     ,

, and

 Assume a large aspect ratio, expansion equilibrium, 
enforced at each time step

 Proportional-integral-differential (PID) current 
controller applies loop voltage at edge

 Rotational transform advance and Grad-Shafranov 
solve with finite difference methods



Ohm’s laws
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 Three considered

 Resistive:

 Steady-state neoclassical:

 Drift-kinetic (from stationary electron momentum eq.)

 Pressure anisotropy and collisional friction force are 
moments calculated from DK4D solutions

 Only resistive can be treated fully implicitly

 For stability, we use



Current ramp-up
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 Ramp-up of toroidal 
current from one 
fixed value to 
another over time

 Current controller 
maintains value 
close to set point

 Several density and temperature profiles 
considered
 Flat, stationary density and temperatures

 Increasing 𝛻𝑛 with stationary 𝛻𝑇𝑠



No 𝛻𝑛 or 𝛻𝑇𝑠 - results
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No 𝛻𝑛 or 𝛻𝑇𝑠 - conclusions
13

 Spitzer resistive case (blue)
 Peaked safety factor as current initially driven at edge

 Flat safety factor profile in steady-state due to uniform 
resistivity and no bootstrap current

 𝑉𝑟 ≈ −0.77 V

 Sauter neoclassical case (red)
 Conductivity decreases with increasing radius

 Hollow safety factor profile in steady-state

 𝑉𝑛𝑒𝑜 ≈ −0.95 V:  Larger due to higher resistivity

 DK4D drift-kinetic case (green)
 Good agreement with Sauter in space and time

 Due to long resistive time compared to collision time



Increasing 𝛻𝑛, no 𝛻𝑇𝑠 - results
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Increasing 𝛻𝑛, no 𝛻𝑇𝑠 - conclusions
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 Spitzer resistive case (blue)

 Identical to previous except for slight modification in 
equilibrium due to pressure gradient

 Sauter neoclassical case (red)

 Flatter profiles than previous case

 Conductivity decreases with increasing radius

 Bootstrap current increases with increasing radius

 𝑉𝑛𝑒𝑜 ≈ −0.85 V:  Smaller since there is non-inductive 
current

 DK4D drift-kinetic case (green)

 Again, very good agreement with Sauter in space and time

 No change made to Ohm’s law



ELM-like pressure collapse
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 Current ramp simulations showed good agreement 
between Sauter and DK4D since timescales were slow 
compared to collision time

 Preliminary work being done on quickly-evolving equilibria
 Here we examine two ELM-like pedestal pressure collapses

 Both have same configuration in general

  ν =  τ𝑡𝑟𝑎𝑛𝑠𝑖𝑡 τ𝑐𝑜𝑙𝑙 = 7.64 × 10−3

  τ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 τ𝑐𝑜𝑙𝑙 = 2.62 × 104

 Timescale of collapse differs
 Slow collapse:  0.01 τ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 or 262 τ𝑐𝑜𝑙𝑙

 Fast collapse:  0.001 τ𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 or 26.2 τ𝑐𝑜𝑙𝑙

 Time steps are 1/10 of pedestal collapse times
 DK4D reaches steady-state during each “slow collapse” time step 
 Doesn’t necessarily during “fast collapse” time step



Pressure profiles
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Bootstrap current over time
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 Both of the “slow 
collapses” and Sauter’s
“fast collapse” all 
increase rapidly during 
ELM

 DK4D’s “fast collapse”

 Lags behind

 Continues increasing 
after ELM 

 Takes time to 
collisionally equilibrate



State of this work
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 DK4D has some capabilities beyond other existing 
continuum DKE solvers
 Time-dependent
 Solves for distribution function
 Solves in reference frame of macroscopic flow
 Straight-forward, self-consistent coupling with MHD equations

 Hybrid simulations are first of their kind
 Dynamic evolution of distribution functions and ohmic & 

bootstrap currents in changing magnetic equilibrium
 In slowly-evolving equilibria, one steady-state solution is self-

consistently evolved to the next, verifying use steady-state 
neoclassical Ohm’s laws

 In quickly-evolving equilibria, preliminary DK4D hybrid 
simulations demonstrate lag compared to steady-state model



Future work
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 Improve and extend DK4D

 Investigate alternate (better?) representations 

 Finite elements in 𝑦 and 𝜃 to improve convergence at low 
collisionality

 Non-axisymmetric geometries

 Couple to more advanced MHD code, e.g., M3D-C1

 Perform self-consistent simulations of 3D MHD 
instabilities and calculations of NTV torque



Additional slides21



Axisymmetric drift-kinetic equations
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 Axisymmetric 4D phase space
 is poloidal flux per radian,     is the poloidal angle
 is the total velocity in frame of macroscopic flow
 is cosine of the pitch angle

 Cross-species collisional terms dropped for ions



Collision operator
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 Linearized Fokker-Planck-Landau form

 Poisson equations for the Rosenbluth potentials



Time advancement of electron DKE
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 Implicit, homogeneous convective and collision operator terms 

 Explicit, homogeneous moment terms
 No stability constraints expected since these are integrals over the solution

 Predictor-corrector option available

 Inhomogeneous drive terms



Expansions in DKE
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 Velocity

 Finite elements for

 Hermite cubics

 Cubic B-splines

 Pitch angle

 Legendre polynomials in 

 Configuration Space

 is just a parameter (each flux surface treated locally)

 Fourier modes in



DKE solution method
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 Poisson equations for Rosenbluth potentials solved 
simultaneously with DKE at each time step

 Galerkin method creates a sparse, block diagonal matrix in

 Each block contains information on     and θ derivatives
 Two solver options implemented 

 PETSc (typically with MUMPS)
 Sparse banded matrix using ScaLAPACK



Timescales

 Distribution function will likely evolve to steady state 
within a resistive time

 Must consider full time dependence as MHD code 
time steps (10-100 Alfven times) can be less than the 
electron collision time
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Equilibria used
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 From the JSOLVER equilibrium code

 Large Aspect Ratio

 NSTX



Calculating Sauter-like coefficients
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 When run to steady-state, we can calculate the 
neoclassical conductivity and bootstrap current 
coefficients for an equilibrium

 Must separate inhomogeneous source terms in DKE

 Coefficients given by collisional friction force and 
pressure anisotropy via parallel Ohm’s law

where 



Conductivity and 𝐿31 benchmark
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𝐿32 and 𝐿34 benchmark
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Ion flow coefficient benchmark
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Increasing 𝛻𝑛, stationary 𝛻𝑇𝑠 - results
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Increasing 𝛻𝑛, stationary 𝛻𝑇𝑠 - concls.
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 Spitzer (green) now has nonuniform resistivity

 Sauter (red) and DK4D (green) are, again, in good 
agreement

 Spitzer also now in good agreement

 Coincidental near-balancing of neoclassical conductivity 
and bootstrap current effects

 Lower resistivity on-axis leads to more realistic 
hollow safety factor profiles

 𝑞𝑎𝑥𝑖𝑠 ≈ 1.5, 𝑞𝑒𝑑𝑔𝑒 ≈ 2

 𝑉𝑛𝑒𝑜 ≈ −0.38 V:  Much lower due to lower resistivity


