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Outline

• Disruption Current Asymmetry

– theory

– numerical simulations

• Rotation

– fit of numerical data and analytic scaling

– theory of angular momentum generation
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Toroidal variation of toroidal current in JET
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Toroidal current variation ∆Iφ =
∫

J̃φdRdZ vs. the vertical moment ∆MIZ =
∫

ZJ̃φdRdZ of the current variations. [Gerasimov et al. N.F. 2014]

This was interpreted by the Hiro current model [Zakharov et al. 2012]. It was shown
analytically [Strauss et al. 2010] that the slope is proportional to VDE displacement.
This is verified by M3D simulations [Strauss, Phys. Plasmas 21, 102509 (2014)].
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Theory of current asymmetry and vertical current moment

The relationship of the toroidal current variations Ĩφ to the toroidally varying part of

the vertical moment of the current M̃IZ is essentially a kinematic effect of displacing
a current perturbation by a VDE.

The toroidally varying poloidal magnetic field is approximately

B = ∇ψ̃ × φ̂, (1)

and the perturbed toroidal current density in polar coordinates is

J̃φ = −
1

r

∂

∂r
r
∂ψ̃

∂r
−

1

r2
∂2ψ̃

∂θ2
. (2)

with ψ̃ = ψ −
∮

ψdφ/(2π). The toroidal current is

Ĩφ =

∮ ∫ a

0

J̃φrdrdθ = −

∮

∂ψ̃

∂r
adθ (3)

in a circular cross section where the boundary is r = a. The vertical current moment
is

M̃IZ =

∮ ∫ a

0

J̃φr
2 sin θdrdθ = −

∮

∂ψ̃

∂r
a2 sin θdθ (4)

where it was assumed that the wall is a good conductor, so that ψ̃ ≈ 0 at r = a.
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The poloidal flux change δψ̃ produced by an axisymmetric displacement potential Φ
satisfies

δψ̃ = ∇Φ×∇ψ̃ · φ̂ (5)

The VDE displacement potential has the form Φ = ξV DE(r) cos θ. Iterating in ξV DE,

ψ̃k+1 =
1

r

(

ξ′V DE
∂ψ̃k

∂θ
cos θ+ ξV DEψ̃

′
k sin θ

)

(6)

where the prime denotes a radial derivative and ψ̃ = ψ̃1 + ψ̃2 + ψ̃3 + . . . where
ψ̃k+1 ∝ ξkV DE. The boundary conditions are ψ̃k(a) = ξV DE(a) = 0. This yields, at
the wall,

ψ̃′
k+1 =

ξ′V DE
a

(

∂

∂θ
(ψ̃′

k cos θ) + 2ψ̃′
k sin θ

)

(7)

Summing (7) over k and integrating over θ gives

K
∑

k=1

∮

ψ̃′
k+1dθ = 2

ξ′V DE
a

K
∑

k=1

∮

ψ̃′
k sin θdθ (8)

Using (3),(4), and (8) gives

Ĩφ = 2
ξ′V DE
a2

M̃IZ. (9)

The ratio Ĩφ/M̃IZ is proportional to the VDE displacement. For an upward VDE,
ξ′V DE(a) > 0.
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M3D simulations of current asymmetry and vertical current moment

ITER FEAT15MA equilibrium was modified by setting toroidal current and pressure
to zero outside the q = 2 surface, keeping the total toroidal current constant ( MGI
model) [Izzo et al. 2008]. Plasma was evolved in 2D to an initial VDE displacement,
then evolved in 3D.

An additional set of states was made by setting current and pressure equal to zero
outside the q = 1.5 surface. These states were unstable to downward VDEs.

The perturbed current and vertical displacement were measured as

∆Iφ =
1

V

(∮

dφ

2π
< J̃φ >

2

)1/2

(10)

∆MIZ =
1

V

(∮

dφ

2π
< ZJ̃φ >

2

)1/2

(11)

(12)

where

V =

∫

dRdZ

< J̃φ > =

∫

dRdZJ̃φ
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magnetic flux and toroidal current

(a) (b) (c) (d)

Upward VDE: (a) ψ (b) Jφ with ξ = 0.72a, time t = 146τA, toroidal angle φ = 0.

Downward VDE: (c) ψ (d) Jφ with ξ = −0.71a, time t = 53τA, and φ = 0.

Plasma is turbulent, not an equilibrium with surface current.
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Time history of perturbed current and vertical current moment

M3D simulations were done with S = 106, wall penetration time τwall = 104τA.
Velocity boundary condition vn = 0.
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Time averaged ∆Iφ/∆MIZ and time histories ∆Iφ,∆MIZ
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(a) Time averages of ∆Iφ,∆MIZ. Showing ∆Iφ/∆MIZ ∝ ξ, for |ξ|
<
∼ 1, when

plasma current channel reaches the wall. (b) Time histories of ∆Iφ,∆MIZ for the
cases in (a). This is similar to JET data. It does not depend on Hiro current
model.
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Dependence of toroidal velocity on vertical displacement

In [Strauss et al. 2014] the toroidal rotation caused by disruptions was calculated.
The previous set of states was used to calculate Vφ, the maximum in time of the
volume average of the toroidal velocity.
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Estimating δB from ∆M

In a circular cross section with large aspect ratio, let

B̃θ = B11 sin(θ+ φ) +B21 cos(2θ+ φ).

Displacing

B21(r − ξ sin θ) ≈ B21 −B′
21ξ sin θ

by a VDE, then

∆MIZ = (1/2)B11 + (ξ/4)B′
21.

Note that ∆MIZ ≈ 0 for ξ = 0, which implies B11 ≈ 0, because it is an internal
mode. In the plot

δB = (r/ξ)∆MIZ ≈ (1/2)|B21|.

For nonzero ξ, B11 can be nonzero. The data available at present does not distinguish
between (1,1) and (2,1) magnetic perturbations.

Future work will use a better measure of δB.
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Scaling of toroidal velocity with ξ and βN

Two sets of cases were compared to get the scaling with βN .
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These cases compare equilibria with βN = 2.7 and βN = 0.27. In the low βN case,
A2 ≈ 0. The fit is very good for ξ/r < 0.6. There is only low βN data for ξ > 0. The
βN = 2.7 and δB data is the same as on the previous slide, for ξ > 0.
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Theory: Conservation of toroidal angular momentum

∂

∂t
Lφ =

∮

(RBφBn − ρRvφvn)Rdldφ (14)

where the total toroidal angular momentum is

Lφ =

∫

ρR2vφdRdZdφ (15)

and the integral in (14) is over the boundary. Using the M3D magnetic field represen-
tation,

B = ∇ψ ×∇φ+
1

R
∇⊥F +G∇φ (16)

in (14) yields

∂

∂t
Lφ =

∮

G
∂ψ

∂l
dldφ (17)

where ∂F/∂n = 0 at the boundary. We have assumed that vφ = 0 at the boundary,
but not vn = 0 at the boundary, although we have done so in simulations with M3D.

If G = G(ψ), then toroidal angular momentum Lφ is conserved. This is the case
in an equilibrium satisfying the Grad - Shafranov equation. If the plasma is not in
equilibrium, such as during a disruption or ELM, then net flow can be generated.
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Analytic model of rotation source - 1

To express L̇φ in terms of magnetic perturbations, the magnetic fluxes ψ and G can
be split into equilibrium and toroidally varying parts, ψ = ψ0+ψ1, G = G0+G1+G2.
For simplicity we assume circular equilibrium cross sections, dl = rdθ. To obtain a
tractable equation for G, assume radial force balance,

G2

R2
+B2

θ +2p ≈ 0 (18)

and assume large aspect ratio so that R ≈ R0 = constant. Then L̇φ can be split into

two parts, L̇φ = L̇φB + L̇φp where

L̇φB = −
R

2Bφ0

∮

∂ψ0

∂θ
B2
θ1dθdφ (19)

L̇φp = −
R

Bφ0

∮

∂ψ0

∂θ
pdθdφ (20)

The plasma is displaced by a VDE with (m,n) = (1,0), ψ0 = ψ0(r − ξ10 sin θ).
Hence

∂ψ0

∂θ
= ξ10 cos θBθ0 (21)

where Bθ = −∂ψ/∂r. Then L̇φB = ξrR/(2q)
∮

B2
θ1 cos θdθdφ.
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Analytic model of rotation source - 2

There must be at least two modes (m,n), (m+1, n) contributing to Bθ1 which beat
together to give a cos θ term. Expanding Bθ1 =

∑

mnBθmn cos(mθ − nφ) gives

L̇φB =
π2ξrR

2q

∑

mn

BθmnBθ(m+1)n (22)

To compare with the scaling (13), let v̇φ = γvφ, in (14). Then (22) yields

A1 =
1

4γτAq
(23)

and taking γτA = 0.01 gives agreement with A1 = 12 in (13). The calculation of
(20), is given in [Strauss et al. 2014].

dLφ

dt
=
π2

2
rqp′0ξ

3
10

R

B3

∑

mn

∂

∂r

[

m(m+1)BθmnBθ(m+1)n

(m− nq)(m+1− nq)

]

(24)

Setting the denominators in (24) equal to unity gives the ratio L̇φp/L̇φB = A2(ξ/r)2,
with

A2 =
q

2
[1 + m(m + 1)]β′

N(ln δB)′r2 (25)

Taking m = 1, q = 2, (ln δB)′r = 1, βN = β′
Nr = 2.7, gives A2 = 8 in

agreement with (13).
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Conclusions

• Relation of ∆I to ∆M .

– ∆I ∝ ξ∆M where ξ is VDE displacement

– Simulations include upward and downward VDEs

– Does not require Hiro current model

• Scaling of Vφ with ξ, δB, βN .

– used same data set as above

– estimated δB from ∆M

– new term independent of βN .
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