Disruption Current Asymmetry and Rotation

H. Strauss, *HRS Fusion*

R. Paccagnella, *Consorzio RFX and Istituto Gas Ionizzati del C.N.R.*

L. Sugiyama, *MIT* J. Breslau, *PPPL*S. Jardin, *PPPL*

CEMM / APS 2014

Outline

- Disruption Current Asymmetry
	- **–** theory
	- **–** numerical simulations
- Rotation
	- **–** fit of numerical data and analytic scaling
	- **–** theory of angular momentum generation

Toroidal variation of toroidal current in JET

Toroidal current variation $\Delta I_{\phi} = \int \tilde{J}_{\phi} dR dZ$ vs. the vertical moment $\Delta M_{IZ} = \int \tilde{J}_{\phi} dR dZ$ variati $\int Z \tilde{J}_{\phi} dR dZ$ of the current variations. [Gerasimov *et al.* N.F. 2014]

This was interpreted by the Hiro current model [Zakharov *et al.* 2012]. It was shown analytically [Strauss *et al.* 2010] that the slope is proportional to VDE displacement. This is verified by M3D simulations [Strauss, Phys. Plasmas **²¹**, ¹⁰²⁵⁰⁹ (2014)].

Theory of current asymmetry and vertical current moment

The relationship of the toroidal current variations \tilde{I}_{ϕ} to the toroidally varying part of the vertical moment of the current \tilde{M}_{IZ} is essentially a kinematic effect of displacing ^a current perturbation by ^a VDE.

The toroidally varying poloidal magnetic field is approximately

$$
\mathbf{B} = \nabla \tilde{\psi} \times \hat{\phi},\tag{1}
$$

and the perturbed toroidal current density in polar coordinates is

$$
\tilde{J}_{\phi} = -\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \tilde{\psi}}{\partial r} - \frac{1}{r^2} \frac{\partial^2 \tilde{\psi}}{\partial \theta^2}.
$$
 (2)

with $\tilde{\psi}=\psi-\oint \psi d\phi/(2\pi)$. The toroidal current $\oint \psi d\phi/(2\pi).$ The toroidal current is

$$
\tilde{I}_{\phi} = \oint \int_{0}^{a} \tilde{J}_{\phi} r dr d\theta = -\oint \frac{\partial \tilde{\psi}}{\partial r} a d\theta \tag{3}
$$

in a circular cross section where the boundary is $r=a.$ The vertical current moment
is is

$$
\tilde{M}_{IZ} = \oint \int_0^a \tilde{J}_{\phi} r^2 \sin \theta dr d\theta = -\oint \frac{\partial \tilde{\psi}}{\partial r} a^2 \sin \theta d\theta \tag{4}
$$

where it was assumed that the wall is a good conductor, so that $\tilde{\psi}\approx0$ at $r=a.$

The poloidal flux change $\delta\tilde{\psi}$ produced by an axisymmetric displacement potential Φ satisfies

$$
\delta \tilde{\psi} = \nabla \Phi \times \nabla \tilde{\psi} \cdot \hat{\phi} \tag{5}
$$

 $\delta \psi = \nabla \Phi \times \nabla \psi \cdot \phi$ (5)
The VDE displacement potential has the form $\Phi = \xi_{VDE}(r) \cos \theta$. Iterating in $\xi_{VDE},$

$$
\tilde{\psi}_{k+1} = \frac{1}{r} \left(\xi'_{VDE} \frac{\partial \tilde{\psi}_k}{\partial \theta} \cos \theta + \xi_{VDE} \tilde{\psi}'_k \sin \theta \right)
$$
(6)

where the prime denotes a radial derivative and ψ ˜ $\begin{array}{c} \displaystyle =\tilde{\psi}\ \displaystyle =\ \displaystyle \kappa_{\scriptscriptstyle V} \end{array}$ $\tilde{\psi}_1 + \tilde{\psi}$ $\tilde{\psi}_2 + \tilde{\psi}$
 $\tilde{\psi} = 0$ where the prime denotes a radial derivative and $\psi = \psi_1 + \psi_2 + \psi_3 + \ldots$ where $\tilde{\psi}_{k+1} \propto \xi^k_{VDE}$. The boundary conditions are $\tilde{\psi}_k(a) = \xi_{VDE}(a) = 0$. This yields, at the wall, $\tilde{g}_{k+1} \propto \xi^k_{VDE}.$ The boundary conditions are $\tilde{\psi}_k(a) = \xi_{VDE}(a) = 0.$ This yields, at $\tilde{\psi}_k$

$$
\tilde{\psi}'_{k+1} = \frac{\xi'_{VDE}}{a} \left(\frac{\partial}{\partial \theta} (\tilde{\psi}'_k \cos \theta) + 2 \tilde{\psi}'_k \sin \theta \right)
$$
\n(7)

Summing (7) over k and integrating over θ gives

$$
\sum_{k=1}^{K} \oint \tilde{\psi}'_{k+1} d\theta = 2 \frac{\xi'_{VDE}}{a} \sum_{k=1}^{K} \oint \tilde{\psi}'_{k} \sin \theta d\theta
$$
 (8)

Using (3),(4), and (8) gives

$$
\tilde{I}_{\phi} = 2 \frac{\xi'_{VDE}}{a^2} \tilde{M}_{IZ}.
$$
\n(9)

The ratio $\tilde{I}_{\phi}/\tilde{M}$ I_{IZ} is proportional to the VDE displacement. For an upward VDE, $\xi^{\prime}_{VDE}(a) > 0.$

M3D simulations of current asymmetry and vertical current moment

ITER FEAT15MA equilibrium was modified by setting toroidal current and pressureto zero outside the $q = 2$ surface, keeping the total toroidal current constant (MGI) model) [Izzo *et al.* 2008]. Plasma was evolved in 2D to an initial VDE displacement, then evolved in 3D.

An additional set of states was made by setting current and pressure equal to zerooutside the $q = 1.5$ surface. These states were unstable to downward VDEs.

The perturbed current and vertical displacement were measured as

$$
\Delta I_{\phi} = \frac{1}{V} \left(\oint \frac{d\phi}{2\pi} < \tilde{J}_{\phi} >^2 \right)^{1/2} \tag{10}
$$

$$
\Delta M_{IZ} = \frac{1}{V} \left(\oint \frac{d\phi}{2\pi} < Z\tilde{J}_{\phi} >^2 \right)^{1/2} \tag{11}
$$

where

$$
V = \int dR dZ
$$

$$
<\tilde{J}_{\phi}> = \int dR dZ \tilde{J}_{\phi}
$$

6

max 0.78E+00 Ø 44E+Ø1 0.13E+01 max 0.38E+01 max C max min $-0.21E+01$ t= 146.36 min $-0.17E+01$ t= 146.36 $min -0.21E+01$ t= 53.28 min $-\emptyset$ 44E+ \emptyset 1 t= 53.28 $\sum_{\substack{n=1\\n, n, n, n, \dots, n-1}}^{\infty} a_n^{\frac{n}{2}} \sum_{\substack{n=1\\n, n, n, \dots, n}}^{\infty} a_n^{\frac{n}{2}} \sum_{\substack{n=1\\n, n, n, \dots, n}}^{\infty} a_n^{\frac{n}{2}}$ (b) (c) (d)

magnetic flux and toroidal current

Upward VDE: (a) ψ (b) J_ϕ with $\xi=0.72a,$ time $t=146\tau_A,$ toroidal angle $\phi=0.$ Downward VDE: (c) ψ (d) J_ϕ with $\xi = -0.71a$, time $t = 53\tau_A,$ and $\phi = 0.$ **Plasma is turbulent, not an equilibrium with surface current.**

Time history of perturbed current and vertical current moment

M3D simulations were done with $S = 10^6$ Velocity boundary condition $v_n = 0$. 6 , wall penetration time τ_{wall} = 10⁴ $\cdot\tau_A.$

Time history of $\Delta I_{\phi}, \Delta M_{IZ}$. (a) upward VDE with $\xi = 0.72a$. (b) downward VDE with $\xi=-0.71a.$

 $\bm{\mathsf{Time}}$ $\bm{\mathsf{averaged}}~\Delta I_{\phi}/\Delta M_{IZ}$ and time histories $\Delta I_{\phi}, \Delta M_{IZ}$

(a) Time averages of ΔI_{ϕ} , ΔM_{IZ} . Showing $\Delta I_{\phi}/\Delta M_{IZ} \propto \xi$, for $|\xi| \stackrel{<}{\sim} 1$, when plasma current channel reaches the wall. (b) Time histories of ΔI_{ϕ} , ΔM_{IZ} for the cases in (a). This is similar to JET data. It does not depend on Hiro current **model.**

In [Strauss *et al.* 2014] the toroidal rotation caused by disruptions was calculated. The previous set of states was used to calculate $V_{\phi},$ the maximum in time of the volume average of the toroidal velocity.

 V_{ϕ} as a function of vertical displacement. The plasma was evolved in ^a 2D VDE to height $\xi,$ then evolved in 3D. Also shown is the magnetic perturbation δB , which is calculated from ΔM . Simulational points and V_{ϕ} fit to (13) are shown.
The final decree for a set of The fit has $A_1 = 12, A_2 = 8$ in the function

$$
\frac{V_{\phi}}{v_A} = A_1 \frac{\xi}{r} \left[1 + A_2 \left(\frac{\xi}{r} \right)^2 \right] \left(\frac{\delta B}{B} \right)^2.
$$
 (13)

10

Estimating δB from ΔM

In ^a circular cross section with large aspect ratio, let

$$
\tilde{B}_{\theta} = B_{11} \sin(\theta + \phi) + B_{21} \cos(2\theta + \phi).
$$

Displacing

$$
B_{21}(r - \xi \sin \theta) \approx B_{21} - B'_{21} \xi \sin \theta
$$

by ^a VDE, then

$$
\Delta M_{IZ} = (1/2)B_{11} + (\xi/4)B'_{21}.
$$

Note that $\Delta M_{IZ} \approx 0$ for $\xi = 0$, which implies $B_{11} \approx 0$, because it is an internal
mode, In the plot mode. In the plot

$$
\delta B = (r/\xi) \Delta M_{IZ} \approx (1/2)|B_{21}|.
$$

For nonzero ξ, B_{11} can be nonzero. The data available at present does not distinguish between $(1,1)$ and $(2,1)$ magnetic perturbations.

Future work will use a better measure of δB .

 ${\bf S}$ caling of <code>toroidal</code> velocity with ξ and β_N

These cases compare equilibria with $\beta_N = 2.7$ and $\beta_N = 0.27$. In the low β_N case, $\beta_N = 0.27$ $A_2 \approx 0$. The fit is very good for $\xi/r < 0.6$. There is only low β_N data for $\xi > 0$. The $\beta_N = 2.7$ and δR data is the same as on the previous slide, for $\xi > 0$. $\beta_N=$ 2.7 and δB data is the same as on the previous slide, for $\xi>$ 0.

$$
\frac{\partial}{\partial t}L_{\phi} = \oint (RB_{\phi}B_{n} - \rho R v_{\phi} v_{n})R dl d\phi
$$
\n(14)

where the total toroidal angular momentum is

$$
L_{\phi} = \int \rho R^2 v_{\phi} dR dZ d\phi \tag{15}
$$

and the integral in (14) is over the boundary. Using the M3D magnetic field representation,

$$
\mathbf{B} = \nabla \psi \times \nabla \phi + \frac{1}{R} \nabla_{\perp} F + G \nabla \phi \tag{16}
$$

in (14) yields

$$
\frac{\partial}{\partial t}L_{\phi} = \oint G \frac{\partial \psi}{\partial l} dl d\phi \tag{17}
$$

where $\partial F/\partial n = 0$ at the boundary. We have assumed that $v_{\phi} = 0$ at the boundary, but not $v_n=0$ at the boundary, although we have done so in simulations with M3D.

If $G=G(\psi)$, then toroidal angular momentum L_{ϕ} is conserved. This is the case in an equilibrium satisfying the Grad - Shafranov equation. If the plasma is not inequilibrium, such as during ^a disruption or ELM, then net flow can be generated.

Analytic model of rotation source - 1

To express L_{ϕ} in terms of magnetic perturbations, the magnetic fluxes ψ and G can
be split into equilibrium and teroidally varying parts, $\psi = \psi$, ψ , $G = G_2 + G_3 + G_4$ be split into equilibrium and toroidally varying parts, $\psi=\psi_0\!+\!\psi_1, G=G_0\!+\!G_1\!+\!G_2.$ s sections $dl = r d\theta$ to obtain For simplicity we assume circular equilibrium cross sections, $dl = r d\theta$. To obtain a tractable equation for G assume radial force balance tractable equation for $G,$ assume radial force balance,

$$
\frac{G^2}{R^2} + B_\theta^2 + 2p \approx 0 \tag{18}
$$

and assume large aspect ratio so that $R \approx R_0=$ constant. Then L_ϕ can be split into
two parts, $L_\phi = L_\phi$, where two parts, $\dot{L}_\phi=\dot{L}_{\phi B}+\dot{L}_{\phi p}$ where

$$
\dot{L}_{\phi B} = -\frac{R}{2B_{\phi 0}} \oint \frac{\partial \psi_0}{\partial \theta} B_{\theta 1}^2 d\theta d\phi \tag{19}
$$

$$
\dot{L}_{\phi p} = -\frac{R}{B_{\phi 0}} \oint \frac{\partial \psi_0}{\partial \theta} p d\theta d\phi \tag{20}
$$

The plasma is displaced by a VDE with $(m, n) = (1, 0)$, $\psi_0 = \psi_0(r-\xi_{10} \sin \theta)$. **Hence**

$$
\frac{\partial \psi_0}{\partial \theta} = \xi_{10} \cos \theta B_{\theta 0} \tag{21}
$$

where $B_\theta=-\partial \psi/\partial r$. Then $\dot{L}_{\phi B}=\xi r R/(2q)\oint B_\theta^2$ ∂_{θ}^{2} cos θdθd ϕ .

14

Analytic model of rotation source - 2

There must be at least two modes (m, n) , $(m + 1, n)$ contributing to $B_{\theta1}$ which beat to give a $\cos\theta$ term. Expanding $B_{\theta1} = \sum_{n=0}^{\infty} B_{\theta1} \cos(m\theta - n\phi)$ gives together to give a $\cos\theta$ term. Expanding $B_{\theta1}=\sum_{mn}B_{\theta mn}\cos(m\theta-1)$ $- n \phi$) gives

$$
\dot{L}_{\phi B} = \frac{\pi^2 \xi r R}{2q} \sum_{mn} B_{\theta mn} B_{\theta (m+1)n}
$$
 (22)

To compare with the scaling (13), let $\dot{v}_\phi = \gamma v_\phi ,$ in (14). Then (22) yields

$$
A_1 = \frac{1}{4\gamma \tau_A q} \tag{23}
$$

and taking $\gamma\tau_A=$ 0.01 gives agreement with $A_1=$ 12 in (13). The calculation of
20) is given in [Strause_et al. 2014] (20), is given in [Strauss *et al.* 2014].

$$
\frac{dL_{\phi}}{dt} = \frac{\pi^2}{2} rqp_0' \xi_{10}^3 \frac{R}{B^3} \sum_{mn} \frac{\partial}{\partial r} \left[\frac{m(m+1)B_{\theta mn} B_{\theta(m+1)n}}{(m-nq)(m+1-nq)} \right]
$$
(24)

Setting the denominators in (24) equal to unity gives the ratio $\dot{L}_{\phi p}/\dot{L}_{\phi B}=A_2(\xi/r)^2$,with

$$
A_2 = \frac{q}{2} [1 + m(m+1)] \beta'_N (\ln \delta B)' r^2
$$
 (25)

Taking $m = 1, q = 2$, $(\ln \delta B)'r = 1, \beta_N = \beta'_N r = 2.7$, gives $A_2 = 8$ in agreement with (13).

Conclusions

- Relation of ΔI to ΔM .
	- **–** [∆]^I [∝] ^ξ∆^M where ^ξ is VDE displacement
	- **–** Simulations include upward and downward VDEs
	- **–** Does not require Hiro current model
- Scaling of V_{ϕ} with $\xi, \delta B, \beta_N$.
	- **–** used same data set as above
	- **–** estimated δB from [∆]^M
	- $-$ new term independent of $\beta_N.$