Update on giant sawtooth calculations CEMM, Savannah, GA

T. Jenkins E. Held J. King S. Kruger NIMROD Team

November 15, 2015

T. Jenkins, E. Held, J. King, S. Kruger, NIMROD Team Update on giant sawtooth calculations

Beam ions affect sawteeth in DIII-D shot #96043.

• Toroidal precession of high-energy tail stabilizes small sawteeth but results in giant sawteeth (Choi et al. POP, 2007).

NIMROD's spatial grid; q and pressure profiles at t = 1.9 s.

T. Jenkins, E. Held, J. King, S. Kruger, NIMROD Team Update on giant sawtooth calculations

Sawtooth behavior reflected in NIMROD's linear, ideal-MHD growth rates.

Plot shows prior results with hot particles.

- Anisotropic stress tensor for hot particles couples to NIMROD's momentum equation.
- With improved equilibria
 - revisit NIMROD's continuum and δf -PIC predictions for slowing-down f_0 only.
 - add RF driven-tail to see if that fully stabilizes the ideal kink.
 - add anisotropic stress closure for thermal ions and two-fluid effects in more complete simulations.

(*) *) *) *)

Examples of f_{slow} .

passing.

$$f_0(\psi,s) = A \rho_{\mathrm{MHD}}(\psi)/(1+s^3)$$

Results from $E_{crit} = 50$ keV and $E_{inj} = 80$ keV calculations.

- Growth rates relatively insensitive to pitch-angle anisotropy.
- Results in Choi *et al.* use $\delta \hat{W}_{\text{fast}} = C_f \varepsilon_1^{3/2} \beta_{\text{ph}} / s_1$ where β_{ph} is isotropic, poloidal beta inside the q=1 surface.

Results from $E_{crit} = 28$ keV and $E_{inj} = 227$ keV calculations.

- Higher-energy particles = stronger stabilization.
- Difficult to ascertain γ's from PIC calculations.
- Improve fidelity by addressing high-energy RF tail.

Comparison of growth rates for continuum and PIC.

• Compare $\beta_f = 0.3$ cases from previous slide: continuum(pink), 2e6 particles(green), 8e6 particles(blue).

Improve fidelity by incorporating RF tail in continuum calculations.

- Match energy dependence of ORBIT-RF simulations.
- Lowest-order energetic particle distribution $f_0 = f_{slow} + f_{tail}$.

Result from one low s resolution case.

• Continuing with higher resolution cases on Edison and Mira.

Conclusions

- Slowing-down-only growth rates insensitive to pitch-angle anisotropy in f_0 .
- Continuum and PIC growth rates agree.
- Continuum simulations with RF tail underway for 6 equilibria in first giant sawtooth cycle.
- Remains to be seen if full stabilization requires anisotropic stress closure for thermal ions and/or two-fluid effects.