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Motivation / Primary Result

● Low-n dynamics during QH-mode discharges 
can be modeled with extended-MHD. 

● We use the nonlinear, extended-MHD code 
NIMROD to study QH-mode discharges on 
DIII-D with broadband MHD. 

● Our simulations find a turbulent-MHD state 
that drives transport in the pedestal.
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Overview

● QH-mode background

● General reconstruction considerations

– How do we determine the initial conditions for NIMROD?

– Consideration of SOL profiles to avoid a discontinuous 
current

● Progress on QH-mode (broadband MHD)  modeling

– Nonlinear cases showing saturation

– Current conclusions and future directions
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Tokamak operation with edge harmonic oscillations (EHO) 
provides access to a quiescent H-mode regime [Burrell 2012]

● EHO/broadband MHD: a small 
toroidal mode number (n~1-5) 
perturbation localized to the 
pedestal region [Burrell et al., PoP 
19 056117 (2012) and refs within]

● Access to QH-mode operation 
regime requires control of the flow 
profile

● In particular, experimental 
observations indicate that the ExB 
flow shear is a key component in 
the generation of QH-mode 
[Garofalo et al., NF 51 083018 
(2011)] from Garofalo 2011
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MHD dynamics drive particle transport

● Fluorine impurity 
transport studies find 
QH-mode provides as 
much particle transport 
as 40 Hz ELMs  

● Typically, core 
temperatures are 
increased with EHO

Comparison discharges on DIII-D from 
Garofalo PoP 22 056116 2015 

Green – ELMing H-mode

Blue – QH-mode with EHO
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Physical mechanisms of QH-mode are 
not fully understood

● Linear MHD calculations suggest EHO 
may be a saturated kink-peeling mode 
partially driven by flow-profile shear 
[Snyder et al., NF 47 961 (2007)]

– Flow shear drives low-n modes 
and stabilizes high-n modes (see 
figure)

● Hypothesis: the saturated mode drives 
particle and thermal transport to 
maintain steady state pedestal profiles

● Why NIMROD?

– Low-n mode requires global 
computations

– Can model realistic x-point 
geometry

– Drift stabilization built into model

– Nonlinear capabilities

ELITE results from Snyder 2007
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Extended MHD codes start from state late in time 
within discharge

● Largest balance is JxB= p for magnetized ∇
plasmas

● Axisymmetric tokamak evolution is slow 
evolution of this force balance

● Experimentally: Reconstructions used to 
describe evolution

– Use Grad-Shafranov solution constrained by 
experimental measurements to describe 
magnetic geometry and shape: EFIT 
dominant code

– Routinely perform transport analysis to 
understand sources and fluxes from state to 
state

● How should extended MHD codes best 
model experiment given this paradigm?

– Requires understanding of reconstruction 
details

– Ultimate goal: understanding of 
sources/fluxes eliminates free parameters 
and provides greatest value

Discharge with EHO from 
Garofalo 2015
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Recent development: re-solve for fields 
from EFIT for numerical accuracy

Mapped current
(FE calculation)

re-solved current

• Enhancement to 
NIMEQ [Howell et al., 
CPC 185 1415 (2014)]

• Permits spatial 
convergence where 
mapped EFIT fields are 
first-order accurate

• Makes NIMROD more 
robust with (low 
resolution) experimental 
reconstructions



10

Reconstructions typically contain discontinuous 
current profiles across the separatrix

● Beyond separatrix: Current free

– → No gradients in pressure 

● QH-mode: large current drive (lives on the peeling boundary) and 
thus large discontinuity

– Discontinuity is problematic for re-solves

– Discontinuity is problematic for nonlinear NIMROD computations

– Discontinuity is not physical

current

pressure

0

separatrix ψ



11

Towards more realistic modeling: 
Inclusion of SOL currents

● The experimental reconstruction doesn't set the gradient of 
thermodynamic quantities to zero on the LCFS because they 
aren't measured to be zero

● Technical issues:

– EFIT profiles only extend to LCFS

– How do we extrapolate while minimizing free parameters?

– Result should be as close as possible to known measurements

R major (m)

LCFS
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Currents (and flows) extend into the divertor

● Force balance is enforced through-out 
the domain

● Divertor current limited to less than the 
ion saturation current [~105 A/m2 for this 
case]

● Inclusion of divertor strike points is of 
interest, but QH-mode edge dynamics 
are localized elsewhere

 J
Φ 

Amps/m2    

 J
pol 

Amps/m2    
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We analyze DIII-D shot 145098 at 4250 ms while 
the discharge is ELM free with broadband MHD

Initial state of 
computation
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Current density and pressure and q profiles

● Our nonlinear computations use a single-fluid MHD model with anisotropic thermal 
conduction (χ∥/χ⊥=108) with 24 toroidal Fourier modes

● This computation is initialized from a linear two-fluid computations with full ion FLR 
effects (ion gyroviscosity and cross heat fluxes) of modes n=1-8 that is run until the 
largest linear perturbations reaches a magnetic energy amplitude of 2x10-6 J

 J
Φ 

Amps/m2    

 J
pol 

Amps/m2    
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Flow effects are known to be crucial to QH-mode

● Flows are specified by the reconstruction up to the separatrix and 
extrapolated to zero beyond the separatrix at the SOL-current-free 
interface 



17

Mode amplitudes saturate to a turbulent state

● n=5  dominant (along with n=4) during linear [0-0.3x10 -4s] and saturation [0.3-0.5x10-4s] 
stages 

● n=2 dominant (along with n=1) later [0.5-0.9x10-4s]

● Final state of computation has n=1,2,4,5 at comparable amplitudes

● Need to run cases long (ms time scale)

● Still need higher resolution and/or FLR stabilization to resolve higher-n modes
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Pressure evolution

● Movie for t > 2.45x10-4s

● Initially coherent eddies 
develop

● Turbulent state develops at 
t > 0.5x10-4s 
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Current evolution

● Movie for t > 2.45x10-4s

● Significant current-density 
dynamics with reversed current 
regions

● More resolution is needed to 
capture dynamics during the peak 
amplitudes saturation phase
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Stochastic fields with homoclinic tangle 
are present in the simulation

Length (m)



21

Dynamic profiles are computed with a n=0 
line-out on the outboard midplane

 J
Φ 

Amps/m2    

 J
pol 

Amps/m2    

Line out for 
axisymmetric 
profile plots
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Final density transport is large compared 
to temperature transport

• Result is surprising with 
stochastic fieldlines and 
large anisotropic thermal 
conduction

– Qualitatively consistent 
with observations

• Need to investigate phase 
correlation effects:

Stochastic
Region

LCFS
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Modifications to the flow profiles are small

• Toroidal rotation profile 
is essentially unchanged

• Poloidal rotation is 
modestly modified 
during the peak 
amplitude phase, but 
returns to nearly the 
initial state for t ≥ 7x10-5s

Stochastic
Region

LCFS
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Open questions

• What is the saturation mechanism?
– Profile modification through relaxation?

– Coupling to higher-n modes? [Do we need to include FLR 
drift stabilization?]

• How does the modeled perturbation compare with 
measurements?

– Near term: Compare with magnetic coil measurements

– Long term: Compare with BES measurements

• Can we model the transport caused by the broadband MHD?

– Related to the saturation mechanism through profile 
modification

– Many subtleties here: next slides
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Transport effects are subtle but critical

• Reconstructed profiles include the effects of MHD transport
• Implicit transport contained within the reconstruction:
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Need future studies to characterize 
MHD transport

• NIMROD models the evolution of 3D, nonlinear perturbations 
with the extended-MHD model around 2D state 

– These perturbations self-consistently modify the 
axisymmetric state

– Major complication: the reconstructed state includes transport 
from the 3D perturbations

• Currently, we are double counting ΓMHD (once from NIMROD and 
once in the reconstruction)

• Cancel out ΓNIMROD with an ad-hoc source for a consistent model?

– Does this preclude saturation through profile modification? 

• Can we check that ΓNIMROD = ΓMHD?

– Need to know all other sources and fluxes to test
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Summary

• Initial state is based off an EFIT reconstruction
– We re-solve the Grad-Shafranov equation with open fieldlines 

consistent with NIMROD's basis functions

– Modeling with a SOL eliminates edge current/flow discontinuities

• Preliminary QH-mode results are tantalizing: 
– Nonlinear modeling produces a saturated turbulent-like state

– Mode preferentially produces density transport

– Need to run simulation longer and at higher resolution

• Much more to study:

– Experimental (magnetic coil) comparisons

– Saturation mechanism

– MHD transport
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