OAK RIDGE INSTITUTE FOR

SCIENCE AND EDUCATION
/ Managed by ORAU for DOE

0:0 GENERAL ATOMICS

M3D-C'! simulations of plasma response in
ELM-mitigated AUG and DIII-D discharges

B.C. Lyons'2, N.M. Ferraro?, S.R. Haskey?, N.C. Logan3

1 Oak Ridge Institute for Science and Education
2 General Atomics
3 Princeton Plasma Physics Laboratory

Meeting of the SciDAC Center for Extended MHD Modeling
Savannah, GA
November 15™, 2015




Acknowledgments

* DIlI-D study

— Data analyzed largely by C. Paz-Soldan and is the subject of a
forthcoming paper

“Equilibrium drives of the low and high field side n=2 plasma
response and impact on global confinement”

To be submitted to Nuclear Fusion
— MARS-F modeling performed by S.R Haskey
— IPEC modeling performed by N.C. Logan

- ASDEX-Upgrade data analyzed largely by W. Suttrop

OAK RIDGE INSTITUTE FOR
\ A SCIENCE AND EDUCATION 0:0 GENERAL ATOMICS
[N

Managed by ORAU for DOE 2



Infroduction

- External three-dimensional magnetic perturbations have
become a principal means of mitigating or suppressing edge-
localized modes (ELMs) in tokamaks

- Sophisticated magnetohydrodynamics (MHD) modeling is
required to understand how the plasma responds to these
perturbations

« M3D-C'is used to model the plasma response in a variety of
plasma and magnetic perturbation configurations
— Phasing (differential phase angle) between multiple coils
— Variations in pressure and current profiles
* Results compared to
— Experimental data and observations
— Numerical results from IPEC and MARS-F

OAK RIDGE INSTITUTE FOR
\ } SCIENCE AND EDUCATION 0:0 GENERAL ATOMICS
»n ‘ Managed by ORAU for DOE 3



ELMs can be mitigated or suppressed by external 3D

magnetic fields

- DIlI-D has demonsirated complete suppression of ELMs using
externally-applied 3D magnetic perturbations

— Evans, T.E. et al. Nat. Phys. 2, 419 (2006).
— Among others
- Results motivated installation of coils on several machines
— ASDEX Upgrade
— KSTAR
— MAST
— NSTX-U
— ITER (planned)
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Theoretical understanding is still incomplete

- Early theoretical work focused on the nature of the applied
vacuum field
— Resonant perturbations at rational surfaces open islands
— Overlapping of islands at edge-pedestal boundary produces
stochastic fields
— Increased transport in stochastic layer maintains pedestal height/
width below ELM stability thresholds
 Recent MHD simulations have demonstrated the importance of
the plasma response
— |dedlly, resonant fields are completely shielded by plasma currents
— Resistively, resonant fields can be enhanced by tearing
— Non-resonant fields excite kink-like deformations with m>nqg

— Kink and tearing structures can couple to each other
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Plasma response can greatly alter periurbed

magnetic spectrum

- SURFMN-like field decomposition 6B,(¢) =3, Bun(¥) exp [i (mb — no)]

— Tearing enhances

— Screening suppresses
Kink response amplifies non-resonant fields with m>nq
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Ideal and resistive MHD modeling capture some, but

not all trends

:]  High-Field Side
4. _Response (G)

05 § 20, '
*
00, ‘e ‘
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- IPEC (solid lines) and MARS-F modeling versus data from
magnetic probes (symbols)
— Generally captures frends as pressure is varied (far right)
— Struggles to reproduce trends as current profile is varied (far left)

- Can extended MHD modeling with M3D-C' reproduce or
improve these results?
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M3D-C! allows for extended MHD simulations of the

plasma response to applied 3D fields

« M3D-C'[1]is a sophisticated extended MHD code
— Fully three-dimensional
— Two-fluid
— Linear and nonlinear modes
— EFIT Grad-Shafranov equilibrium recomputed on adaptive mesh
with high-order finite element representation
- Plasma response calculations
— Linear (single toroidal mode number)
— Time-independent
— Single- and two-fluid
Mostly single-fluid here

— Experimental kinetic & rotation profiles
Extended beyond separatrix

— Resistive wall model

[1] S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012).
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DIlI-D Reference Equilibrium
158103.03796
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External field coils on DIlI-D

___________________ Vacuum

Rus— Vessel

Limiter
‘ 1l \ Coils

Bp Probe >~
Arrays |

Y
.z/

oy =1

* Three rows of six saddle coils
— Two in-vessel rows (l-coils)
— One external row (C-coils, not pictured)
— Toroidal mode number of perturbations up to n=3

 For n=2fields, phasing A¢y, = ¢up — P10 €N be varied
between upper and lower coils sets
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Reference is ITER-similar shape, lower single null

plasma

- Reference equilibrium (shot | —————
158103 at 3796 ms) has ’ j

— B, =193Tand [, =136 MA
- By=22 .
- v,=03 |
— (s =4.15
- n=2 external 3D field =
applied with I-coils N -
— Relative phase (phasing)

between upper and lower
coil changed in piecewise
fashion

— Phase of both coils flipped
throughout shot for
diagnostic purposes

-0.001

-0.002
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LFS and HFS magnetic response measurements show

multimode response on DIlI-D

These plots show

Magnitude of perturbed magnetic
field as the phasing is varied

Signal at low-field side (LFS) and
high-field side (HFS) probes
Field from plasma response only

Null occurring where response from
upper and lower coils cancels

- Signals at LFS and HFS have
different phasing dependences

* Indicates multiple modes are
being driven simultaneously in
DIlI-D with n=2 fields

 For more detail, see C. Paz-Soldan
et al., PRL 114, 105001 (2015)

OAK RIDGE INSTITUTE FOR

mb SCIENCE AND EDUCATION
[N

‘ Managed by ORAU for DOE 12

0:0 GENERAL ATOMICS



LFS and HFS magnetic response measurements show

multimode response on DIlI-D

- These plots show 8 _ Reference
— Magnitude of perturbed magnetic — 6l .
field as the phasing is varied e lil
— Signal at low-field side (LFS) and 0t : . s
high-field side (HFS) probes g_:a i 1
— Field from plasma response only = 2 ; ¢ [+ D
— Null occurring where response from 0 S
upper and lower coils cancels
- Signals at LFS and HFS have 2, ,
different phasing dependences ::% *
- Indicates multiple modes are ¢ T, A
being driven simultaneously in ga 1 : ‘ ! :
DIII-D with n=2 fields 2 .l Y
- For more detail, see C. Paz-Soldan B end| | % :,;'
et al., PRL 114, 105001 (2015) % % Am 70 380
? uL
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Modeling of reference shows excellent agreement

between experimental data and various codes

. Reference
- IPEC' uses an ideal MHD model ————
. | — IPEC
— No rotation = 5 MARS £
— Perfect screening at rational 2 af ™, = 3D-CH
surfaces 23
- MARS-F2 uses a single-fluid, 2|
resistive MHD model '
0

— Simulations performed with
carbon toroidal rotation profile

— Resistivity allows for tearing or 2 e
imperfect screening e, |= IPEC
. . o) 1.5¢ \ MARS-F 7]
* Here, M3D-C! use single-fluid = w, (MODC1 ]
model with ExB rotation profile e 1
v
T 0.5}
1 J-K. Park, A.H. Boozer, and A.H. Glasser, ;
Phys. Plasmas 14, 052110 (2007). 0 ‘ N
0 9 180 270 360
2Y. Q. Liu, et al., Phys. Plasmas 7, 3681 (2000). Ao .
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M3D-C' results sensitive to changes in non-ideal effects

Using carbon toroidal rotation Including two-fluid terms gives
improves agreement with MARS-F poorer agreement with data
Reference Reference
5 . 6
4 ] 5
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%) ) n o
- —-MARS-F Y - Exp. Trend
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Carbon toroidal rotation profile results in reduced kink
response
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Enhanced tearing in two-fluid simulation due to

electron rotation zero crossing near gq=7/2
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Plasma response variation with
equilibrium parameters
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High q95 frends on both LFS and HFS roughly captured

by M3D-C' modeling

High q95 discharge has

gos =511 B,=22 v.=025

* LFS probe shows slight shift in
phasing variation

* HFS probe shows significant

amplitude decrease

« M3D-C! sees both these trends,
although
— LFS phase shift somewhat larger
than experiment ~

— HFS amplitude decrease
somewhat smaller than exp.

- IPEC and MARS-F find phase shift
on LFS but don’t capture
amplitude reduction on HFS 0 9 180 270 360
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H- to L-mode trends on both LFS and HFS captured by

M3D-C'! modeling

L-mode discharge has 6 . ‘ .

- EXp. Trend|  eeeen,
dos =3.8 By =050 v, =15 5., =MSD-Cl | T
» LFS probe shows s
— significant amplitude decrease

— large shift in phasing variation

« HFS probe shows

— significant amplitude decrease

— slight shift in phasing variation
* L-mode closer to single-mode ;;;;f_—mggee (Re)

response o) .

« M3D-C! sees these trends, though

the amplitude decreases are
somewhat smaller

* |PEC and MARS-F capture LFS but
not HFS trends
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M3D-C! struggles to reproduce B trends

- Low- B discharge
By =13 v.=03 qo5=405
- High- B discharge
By =28 v,.=0.15 q,=425
* LFS probe shows
— significant amplitude increase
— slight phasing shift w/ increasing 8
« HFS probe response largely
insensitive to
« M3D-C! modeling
— Does an okay reproducing LFS
trend, especially at highest

— Does not capture HFS invariance

IPEC captures both trends for
smoothly-varied equilibria
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ASDEX Upgrade
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External field coils on ASDEX Upgrade

- Two rows of eight in-vessel
saddle coils

 Toroidal mode number of
perturbations up to n=4

« For n=2 fields, the differential
phase angle (AKA phasing)
can be varied between
upper and lower coils sets

- Agp — ¢up — leow
— Varies the magnetic pitch
angle of the applied field

— Affects coupling of resonant

and non-resonant fields Lower B-— "

coils x 8
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Phasing affects the magnitude of ELM mitigation

- Density and ELM frequency are modulated by phasing
- Strongest mitigation at minimum density

Suttrop, W. et al. EX/P1-23. IAEA FEC 2014.
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M3D-C! has calculated the plasma response for

ASDEX Upgrade shot 30835

« Good ELM mitigation observed with n=2 fields in 30835 and
similar shots

* Four phasings have been studied with MARS-F and VMEC

— Ap=230° : Optimum vacuum resonance

— Ap=90° : Strongest ELM mitigation

— Ap = —90° . Classical, non-stationary ELM-free phase

— Ap = —150°: Optimum non-resonant field (ELM mitigation observed)
« We've used M3D-C' to examine this shot

— Time-independent, linear analysis

— Not quantitative validation work
Not comparing to measured field data
Only examining qualitative trends/correlations
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Resonant and non-resonant fields may both impact

ELM mitigation

- Strongest ELM mitigation
occurs Where resonqni Fourier components at q=7/2: AUG 30835.3200 high-q _ equilibrium
field is maximized x ———— -

- Non-resonant field may o —Resonant (ma)=(12)
play significant role

— Resonant field similar at
Ap =30° & Ap = —150°
— Non-resonant field

significantly stronger at
Ap = —150° where ELM

mitigation is observed

| (G/KA)

B
mn

1
90 180

180 90 0
T A ('bUL T
ELM-free strongest
mitigation

non-resonant
(mitigation) Vacuum resonant

(no mitigation)
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Summary

« M3D-C!' has been used to calculate the linear, steady-state
plasma response of DIlI-D and ASDEX Upgrade to external,
three-dimensional magnetic perturbations

- Validation against magnetic probe signals on DIII-D shows

Good agreement with reference, L-mode, and high-g,s equilibria
Poor agreement with data as B is varied

 Cross-code verification work with IPEC and MARS-F

M3D-C! captures some trends on the magnetic probes not
captured by IPEC and MARS-F, and vice versa

Source of discrepancies in between the codes, and with the
data, still uncertain
M3D-C'! modeling demonstrates sensitivity to the rotation profile
MARS-F may achieve better agreement with data if ExB rotation
profile is used
Small changes in the degree of resonant penetration can have
relatively large impact on magnetic signals
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Summary (continued) and future work

« Preliminary investigations on ASDEX Upgrade suggest that ELM
mitigation is determined by both resonant and non-resonant
affects

* Future work
— Detailed comparison between Fourier spectra from M3D-C', IPEC,
and MARS-F solutions to determine source of discrepancies

— Further examination of sensitivities to nonideal effects
Rotation profile variation on M3D-C'! and MARS-F
Improved two-fluid analysis with M3D-C'!

— Additional studies of ASDEX Upgrade plasmas
Examine other shots, especially from recent experiments
Perform quantitative validation work

— New collaboration with KSTAR to study ELM suppression
experiments, including multiple toroidal harmonics
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NIES solves to the low-collisionality drift-kinetic

distribution function

- The Neoclassical lon-Eleciron Solver (NIES) solves a set of drift
kinetic equations (DKEs)

— Steady-state distribution function in general, axisymmetric
geometries

— Deep in low-collisionality regime
— Conductivity, flows, and booftstrap currents can be calculated

— DKEs reduce to solvability conditions on the linearized Fokker-
Planck-Landau collision operator

]{ 4 o HEK,) = j[ dis,
v,w W Y,w,A

. eVol Ve'Uthc 2 2 Ld_P
Se _{ T. Jo Utm ( / JBd0 + endy J, Jde

2ups(w) 0 47r1/sv
CK]= 2 —( AT ) + e W, &
w o VemeI dT Vthe 106, + l 5vthe / f
.0 aK w2 0K, = muw? T dp w [P et %o S e
- € +€SI w B KS
6 ow  mgyv

6 ths ths'

2m 2 2m
_ VgUths JB d_/ JB
f\/ls/o (9 A)(I) d9 thsstdw2 (0 A)\I} dg 5 Vzm,l_[ dT Vins

YT el dv w [2¢
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2
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NIES can now accept M3D-C! equilibria as input

* Previously NIES used
— Analytic, large aspect ratio equilibria
— Numerical equilibria from JSOLVER
— Only up-down symmetric equilibria had been considered
* IDL routines written by N.M. Ferraro output necessary quantities
from M3D-C! equilibria
— Translate equilibria to flux coordinates as used by NIES
— NetCDF standard output

- NIES modified to read these equilibria

— Inifialization subroutines convert NetCDF input to NIES data
stfructures

— Few other changes needed to NIES
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05+

NIES conductivity and bootstrap currents for M3D-C'

and JSOLVER equilibria benchmarked to Sauter fits
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Up-down asymmetric equilibria allow for the

numerical evaluation of the geometric function [

0.4

—lSolove‘v

—DILD |

02+ ¥

0 P :;2,

d , . [adf X 5
T(¥) =2 5;$dlB - VR + ¢ [2b - V(Vy - VInR?) g2
+Vy - V(b - VInB)] oal
0.6

-0.8 L 1 1 1 1 1 I I 1 [

0 0.1 02 03 04 05 06 07 08 09 1

Y

« Appearsinion DKE when v, ~ § <« 1
 Trivially zero for up-down symmetric equilibria

-  Numerical evaluation within NIES from M3D-C! equilibria
showed it to be small, albeit noisy

-  Prompted further analytic evaluation, revealing it to be
identically zero in all Grad-Shafranov equilibria
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Summary and future work

 NIES
— Now interfaces with M3D-C' axisymmetric equilibria, solving for
- Steady-state, low-collisionality distribution functions
Neoclassical conductivity, poloidal flow, and booftstrap currents

— Numerical evaluation and subsegquent analytic evaluation of nhovel
geometric factor present at extremely low collisionality has
revealed it to be identically zero

— NIES is therefore accurate in the v, ~ d < 1 regime for both ions and
electrons without further modification

- DK4D
— Finite-collisionality, time-dependent DKE solver uses much of the
same machinery that NIES uses
— Should be able to interface with M3D-C' equilibria relatively easily
— Will be used to provide neoclassical closure for M3D-C'

— Transport-timescale evaluation of axisymmetric steady-state
equilibria with self-consistent resistivity and bootstrap currents
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ADDITIONAL SLIDES
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HFS q95 trends not captured by IPEC or MARS
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HFS H- o L-mode trends not captured by IPEC or MARS

IPEC MARS-F
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MARS-F agreement with L-mode data could be

improved by using ExB rotation profile

Compared to M3D-C! using ExB Compared to M3D-C! using
rotation carbon toroidal rotation
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X B trends are captured by IPEC for smoothly-varied

equilibria, but not experimental reconstructions

VARYPED equilibria Experimental reconstructions
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