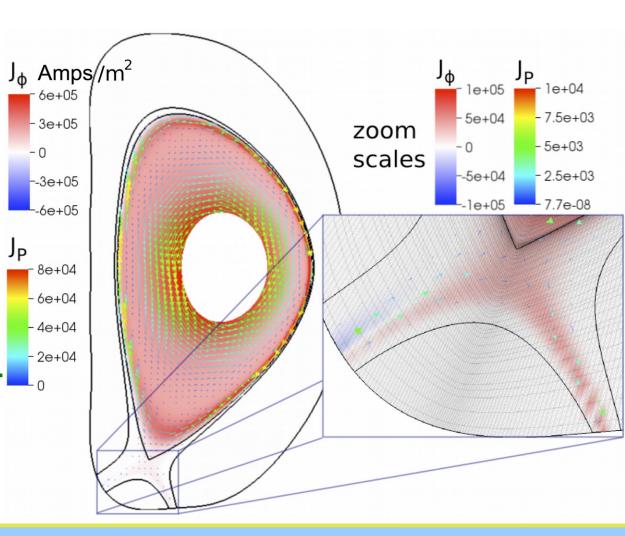
Update on Scrape-off-layer Transport Modeling

Alexei Pankin, Jake King, and Scott Kruger


Tech-X Corporation, Boulder, CO 80303, USA

Plasma Profiles in SOL are Important

SOL profiles are important because

- Allow realistic resistivity inside and outside LCFS
- SOL current profiles can avoid unphysical discontinuities
- Details are important for two-fluid, FLR and closures responses
 NIMROD resolves Grad-Shafranov solver to selfconsistent currents in open flux region
- NIMROD domain includes:
 - Closed-flux region
 - Scrape-off layer (SOL
 - Current-free region

NIMROD for SOL Transport Studies

- Inclusion of SOL profiles in NIMROD extends the code capabilities for transport studies in SOL
 - $J \times B = \nabla p$ force balance in extended MHD does not imply steady states because of flows
 - SOL flows due to FLR, two-fluid, and closures responses [A. Aydemir NF 2009; S. Pamela PPCF 2010]
- NIMROD studies to investigate these flows and their effects on ELM dynamics are initiated
 - Braginskii and (ultimately) DKE-closures for axisymetric transport modeling
 - NUBEAM and TORIC in TRANSP and ONETWO for sources
- Understanding edge transport key to simulating multiple ELM cycles

Deriving Near Steady State Solutions

NIMROD solves extended MHD equations

$$\frac{\partial n}{\partial t} + \nabla \cdot n \mathbf{V} = \nabla \cdot D \nabla n \qquad \nabla \cdot \mathbf{B} = 0$$

$$M n \frac{\partial \mathbf{V}}{\partial t} = -\nabla p + \mathbf{J} \times \mathbf{B} - \nabla \cdot \Pi_{visc} - \nabla \cdot \Pi_{gv} - \nabla \cdot \Pi_{\parallel} \qquad \nabla \cdot \mathbf{B} = 0$$

$$E = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} [\mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \cdot \Pi_e] \qquad \nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

$$\frac{\partial B}{\partial t} = \nabla \times \mathbf{E}$$

$$\frac{\partial B}{\partial t} = \nabla \times \mathbf{E}$$

Each field can be written as sum of equilibrium and dynamic components $g(x,t)=g_{eq}(x)+\hat{g}(x,t)$

In general, NIMROD considers equilibrium components evolving on slow time scales and does not evolve them

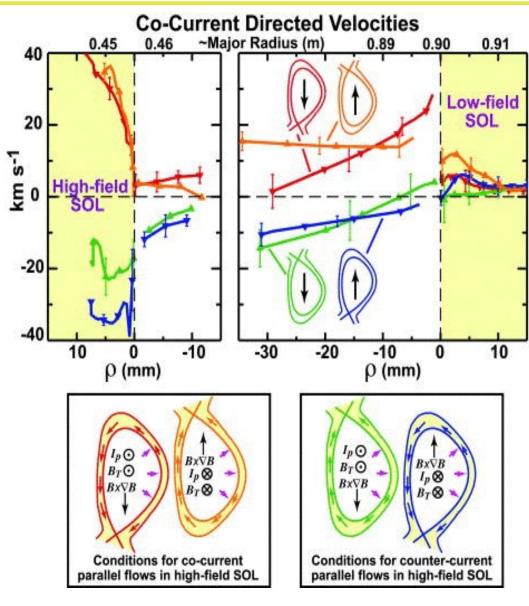
Steady state equilibrium components imply implicit sources that maintain this solution

- For equilibrium without background flows, the implicit source for the plasma density can be written as $S_n = -\nabla \cdot D\nabla n_{eq}$

Deriving Near Steady State Solutions

• With the source $S_n = -\nabla \cdot D \nabla n_{eq}$, the density equation can be written as $\frac{\partial n}{\partial t} = \nabla \cdot D \nabla n + S_n = \nabla \cdot D \nabla n - \nabla \cdot D \nabla n_{eq}$

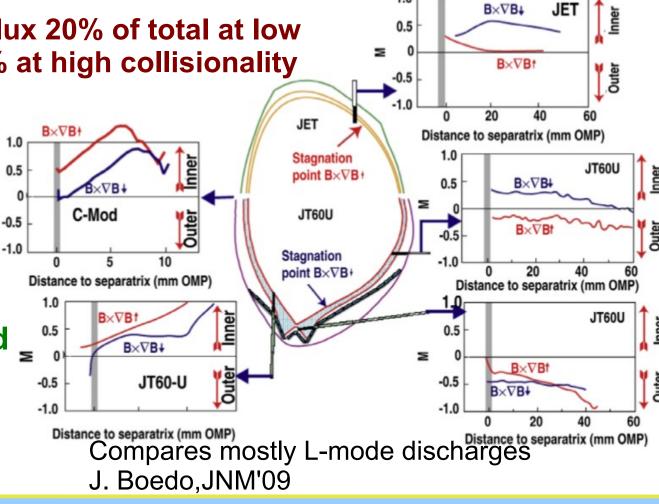
For steady state, one will get $n=n_{eq}$


- NIMROD code has an option to transfer equilibrium to n=0 and evolve it in time
 - Need to understand impact of sources and models
- Hierarchy of MHD models to be considered
 - Resistive MHD
 - Gyro-viscous resistive MHD
 - Two-fluid MHD
 - Two-fluid two-temperature MHD
 - Braginskii and DKE-closures for axisymetric transport modeling
- This study can be used to investigate the physics that determines the SOL flows and SOL width

SOL Flows are Important for Tokamak Dynamics

Experimental observations of SOL flows in Alcator C-Mod [B. LaBombard PoP'08, NF'04]:

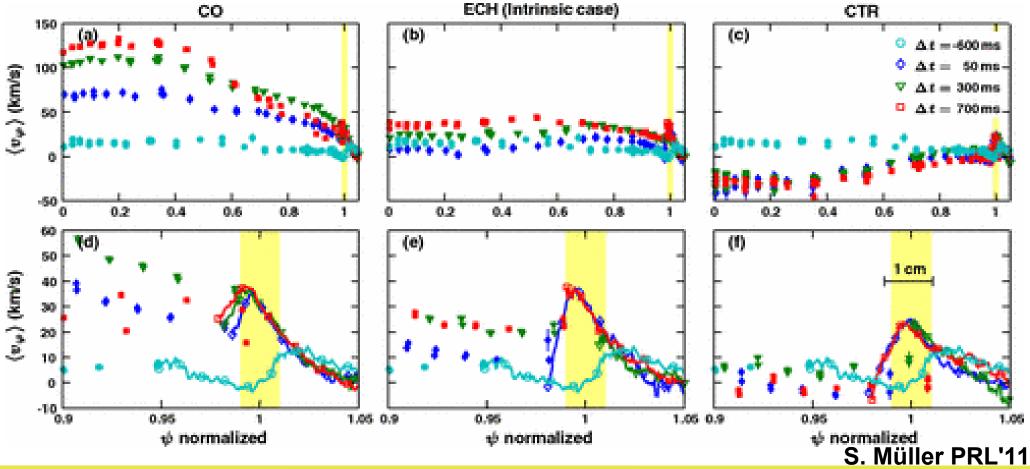
- Near-sonic SOL flows impose cocurrent rotation boundary condition on the confined plasma when B×VB points toward the active x-point
 - Can be related to eduction in input power needed to attain high-confinement modes
- SOL flows may affect transport and critical gradient values in edge plasma
- SOL flows in L-mode plasma investigated
 - Relation of SOL flows to L-H transition is investigated



B. LaBombard PoP'08

SOL Flows are Important for Tokamak Dynamics

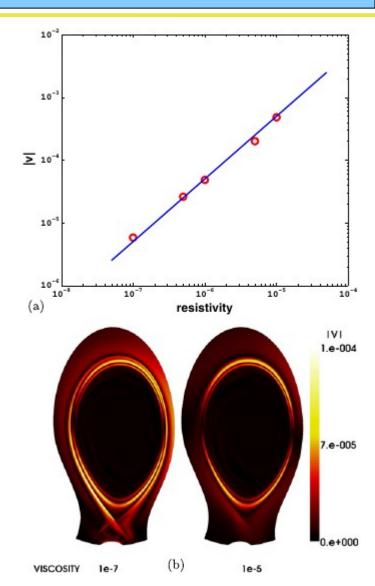
- Multi-device analysis of SOL flows are done by [J. Boedo, JNM'09]
- Radial transport is intermittent and poloidally asymmetric
 - plasma filaments (V_r=1 km/s; L_{pol}=1-3cm) generated near LCFS by interchange instability 1.0
 - Intermittent particle flux 20% of total at low collisionality and 70% at high collisionality
- Pressure peak in LFS: pressure asymmetry and Pfirsch–Schlüter currents drive strong SOL flows
- Both L- and H-mode discharges considered



SOL Flows are Important for Tokamak Dynamics

Toroidal flows in SOL also studied for H-mode in DIII-D [S. Müller PRL'11]

- Mostly toroidal flows in the plasma core are considered
- SOL flows provide the boundary conditions for the core flows
 - Strong co-current rotation layer at the separatrix precedes intrinsic rotation development in the core



CEMM Meeting, Savannah, November 15, 2015

Flow studies at the tokamak edge with fluid models

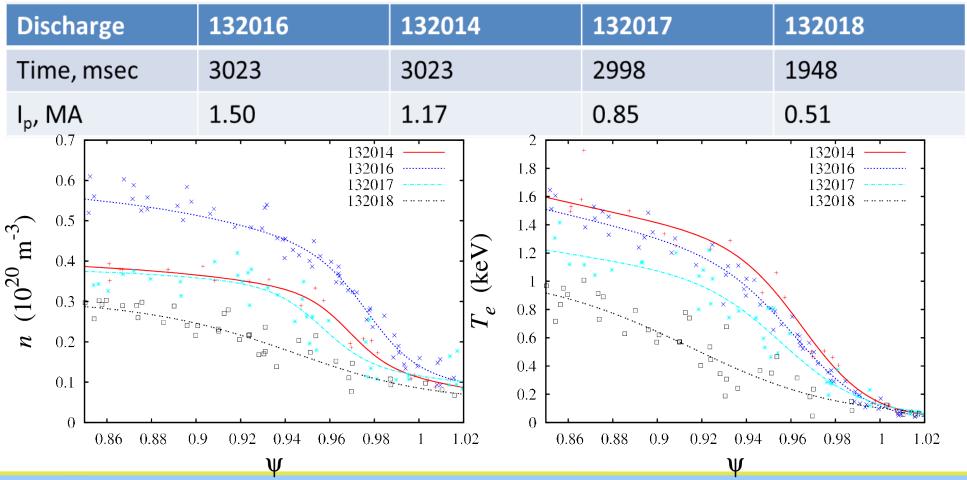
Theoretical/computational fluid studies:

- Aydemir [PoP'07, PoP'09, PPCF'14]
 - SOL flows can be associated with transport processes in a MHD model
 - Resistivity coupled with a bootstrap current model leads to poloidal and toroidal flows, localized to the edge and SOL
 - Analytical derivation and numerical computation using CTD code
- Pamela [PPCF'10] JOREK
 - Circular and diverted equilibria are studied
 - Dependences on viscosity and resistivity are found
- Ferraro [Thesis'08]
 - Radial, poloidal and toroidal flows are investigated
 - Resistivitity, twp-fluid and FLR effects are separated
- UEDGE? Eric Meier was working on this
- Questions: Is there any real validation?

Dependence of poloidal velocity on resistivity and velocity S. Pamela PPCF'10

Kinetic studies at the tokamak edge with fluid models

- Theoretical/computational kinetic studies:
 - Boedo/NEO validation in L-mode [Boedo, PoP'11]
 - 10x differences in V_{\parallel}^{D+} and V_{tor}^{C6+} (V_{\parallel}^{D+} peaked at ~80 km/sec at midplane)
 - 8-10 times in poloidal asymmetry in V_{\parallel}^{D+} reported
 - NEO modeling works well as long as edge source is modeled
 - Did not include SOL flows because closed sources only
 - Key for validation was to have neoclassical model to relate impurity flow to bulk plasma flow
 - XGC0
 - No validation studies that we are aware of

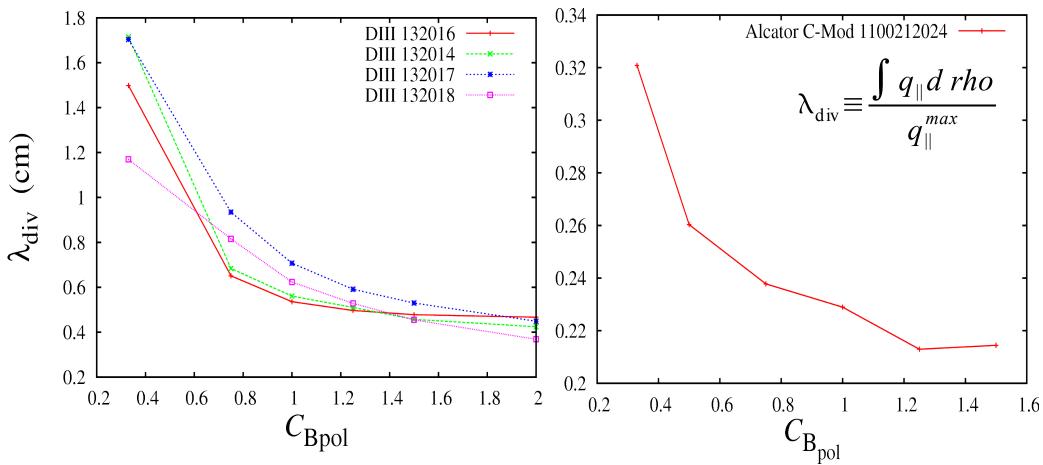

SOL Width Modeling has not yet used eMHD capabilities

- Understanding the physics of SOL width is important because the existing scalings are very unfavorable for ITER
 - It is important to understand the processes that control the SOL width in order to develop mechanisms to control it
- Most models for SOL width are neoclassical- or anomalous based models
 - Heuristic neoclassical model that estimates the SOL width from the balance of magnetic drifts and near sonic PS flows out of SOL to the divertor plates [Goldstone NF'12]
 - In anomalous transport models, SOL width is determined by a balance between parallel transport and cross-field turbulent transport [Myra PoP'15; Halpern NF'13]
 - Fluid modeling with UEDGE code often uses models for source/fluxes to give agreement with heuristic models
 - XGC0 based model [Pankin PoP'15] also needs "sub-grid model" for transport fluxes but has neoclassical effects included
 - Extended MHD+DKE closure attractive
 - Force-balance self-consistency

Experimental Current Scan on DIII-D

- Four reference DIII-D discharges with four different plasma currents (0.51-1.5MA)
- [Snyder et al., PoP 16 (2008) 056118; Groebner et al., NF 49 (2009) 085037]
 - The discharges have about the same
 - toroidal magnetic field (2.1 T)
 - plasma shape (average triangularity 0.55)
 - normalized toroidal beta ($\beta_n \sim 2.1-2.4$)

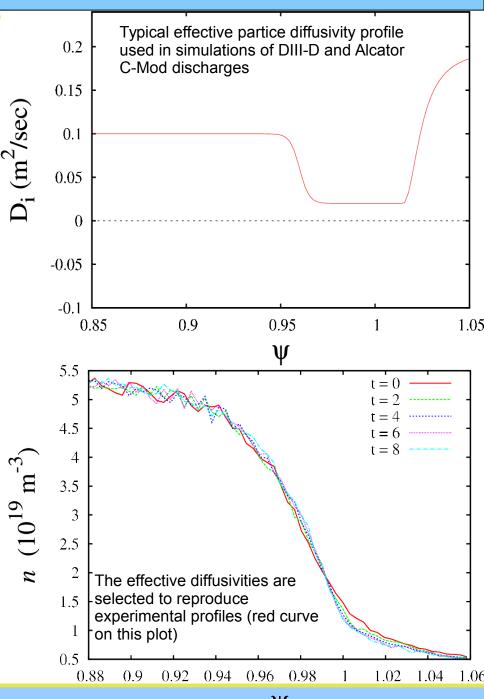
CEMM Meeting, Savannah, November 15, 2015


XGC0 Kinetic Edge Code

- XGC0 code is developed for long time simulation of kinetic equilibrium and transport
 - 5D Lagrangian guiding center dynamics
 - Axisymmetric solution for radial electric field *Er*
 - Ion/electron/neutral, full-f
 - Zeff in the version version used for this study
 - Momentum-energy-particle conserving Monte-Carlo collisions
 - $\Phi(\psi)$ electric potential solver
 - XGC0 is being integrated with all the other physics components
 - XGC0 evaluates kinetic bootstrap current, and reconstruct the Grad-Shafranov equilibrium
 - Simple anomalous transport model that is based on a modified random walk algorithm

XGC0 evaluated Neoclassical Heat Load Width is Broader at Smaller Plasma Currents

Four DIII-D discharges and one Alcator C-Mod discharge 1100212024 that was a part of Alcator C-Mod/DIII-D similarity campaign analyzed $\rightarrow \lambda_{div} \propto I_{P}^{-0.8}$ for DIII-D

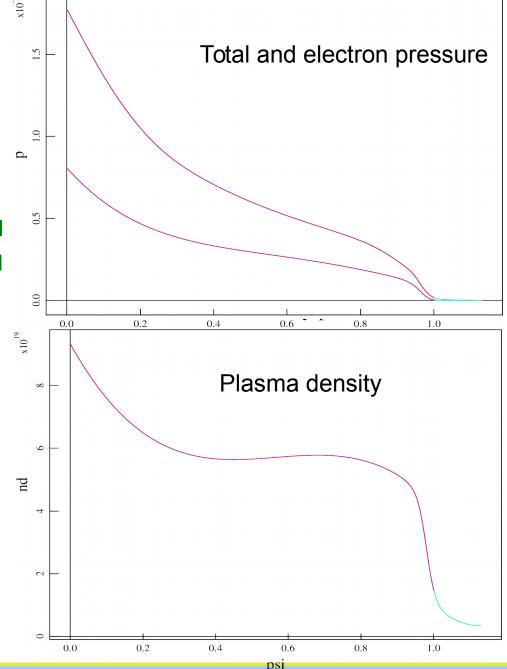


C_{Bpol} is a scaling factor in XGC0 for poloidal flux, hence plasma current

Anomalous transport found from XGC0 analysis

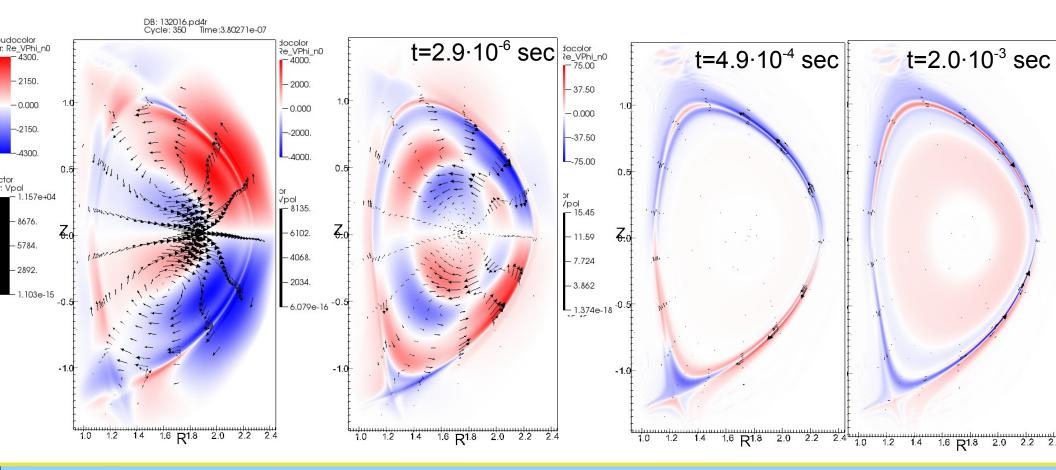
- While the reduced-theory-based models for anomalous transport in XGC0 are available, in these heat load studies the XGC0 simulations use anomalous effective diffusivities that are intended to reproduce experimental profiles
- Alcator C-Mod and DIII-D discharges
 were analyzed
- It has been found that strong pinches in all channels of anomalous transport were necessary to reproduce experimental profiles
- To begin with, anomalous diffusivity profiles are kept fixed and assume to be poloidally uniform for each discharge in all the *I_p* scans

Conclusions from SOL Width Studies with XGC0

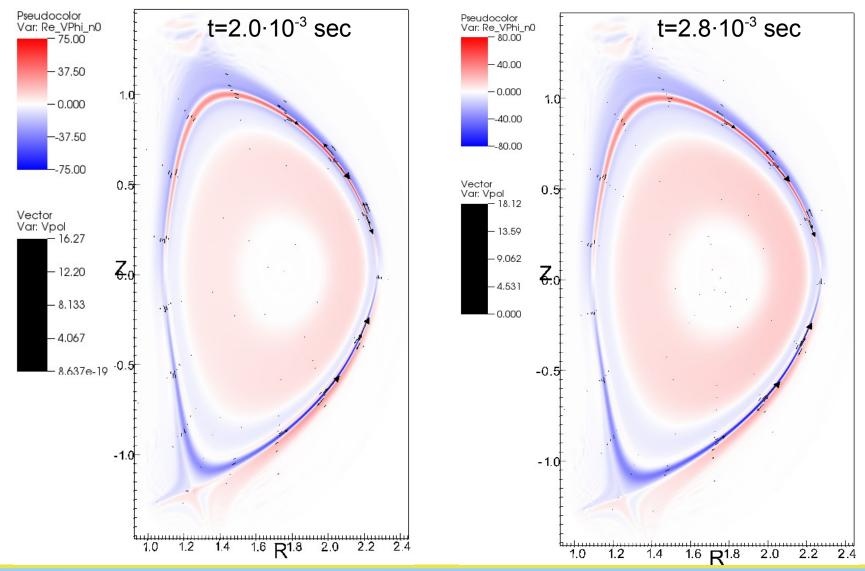

Progress in understanding divertor heat load width is presented using XGC0 particle code

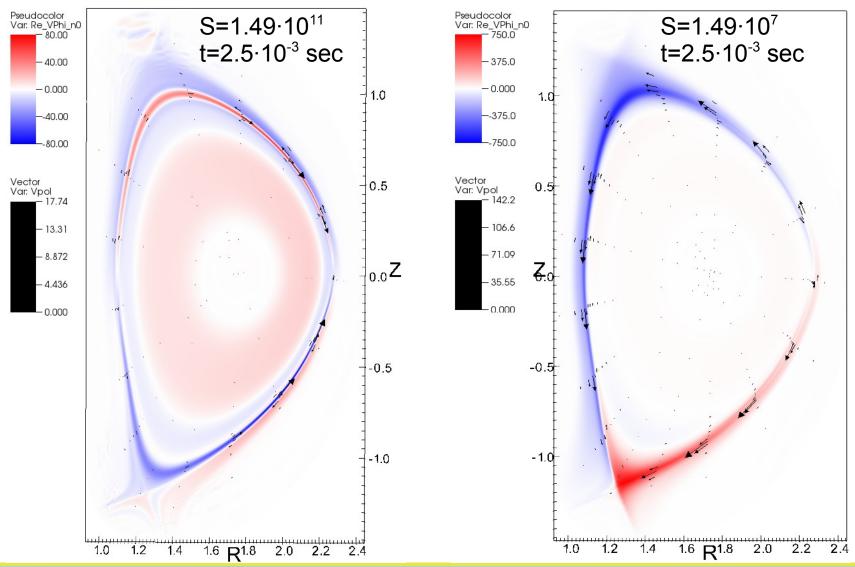
- Neoclassical divertor heat load width is found to be broader for smaller plasma currents $\propto I_P^{-0.8}$ in DIII-D
- Alcator C-Mod discharge has weaker scaling of the divertor heat load width with plasma current compared to four DIII-D discharges analyzed in this study
- Neutral collisions have rather weak effect on the neoclassical divertor heat load width.
- A poloidally uniform, Ip-independent anomlous transport can destroy the neoclassical Ip scaling behavior.
- However, a ballooned, even lp-independent, anomalous transport can recover the neoclassical lp behavior ~ I_p-0.6
- Did not include analysis of flows in these experimental studies

SOL Flow Modeling Using NIMROD

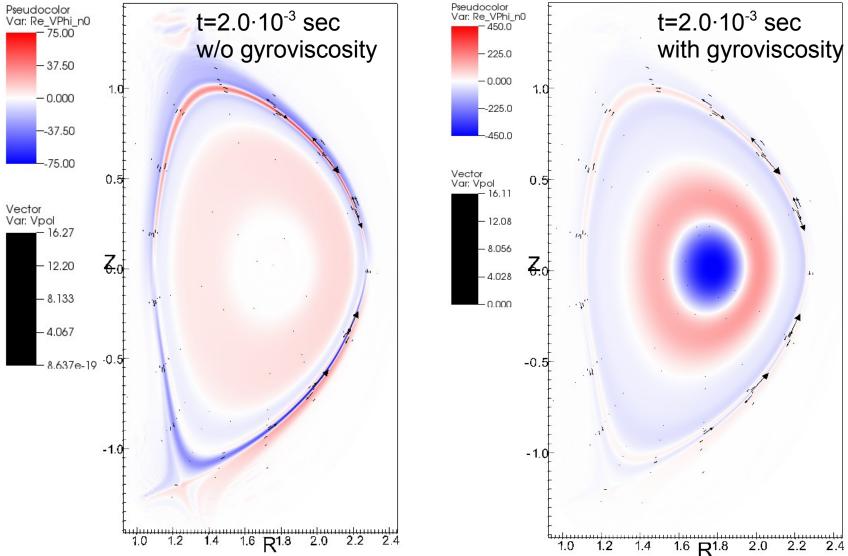

- DIII-D discharges that were used with XGC0 are also used with NIMROD
- Several MHD models are tested so far for the high plasma current DIII-D discharge 132016
 - Resistivity is scaled by a factor 10⁴
 - Effect of resistivity profile is studied
 - Gyroviscosity and two effects are investigated
 - All simulations shown use anisotropic parallel momentum and thermal conduction!
- EFIT equilibrium and reconstruction of experimental density and temperature profiles are used
 - Zeff=1.1
 - Spitzer resistivity
 - S=1.5.10⁹
 - τ_A =4.7·10⁻⁷ sec
 - $\ \tau_{\rm R} \textbf{=6.9.10}^{_2} \, \textbf{sec}$

equilibrium transferred to n=0 mode and evolved


- No severe requirements to resolution: 60x128 with pd=4
- 96 cores on Edison are utilized

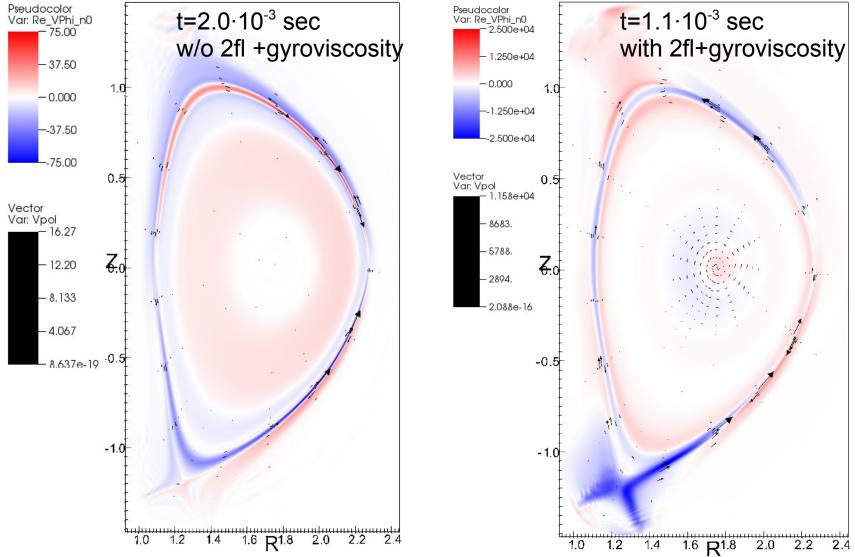

Resistivity is found too small to see any effect

Spitzer resistivity profile vs flat resistivity profile at S~10⁹


Resistivity is scaled so S changes from 1.5.10⁷ to 1.5.10¹¹ - S~10⁷ results in 10x flow magnitude => Realistic values required

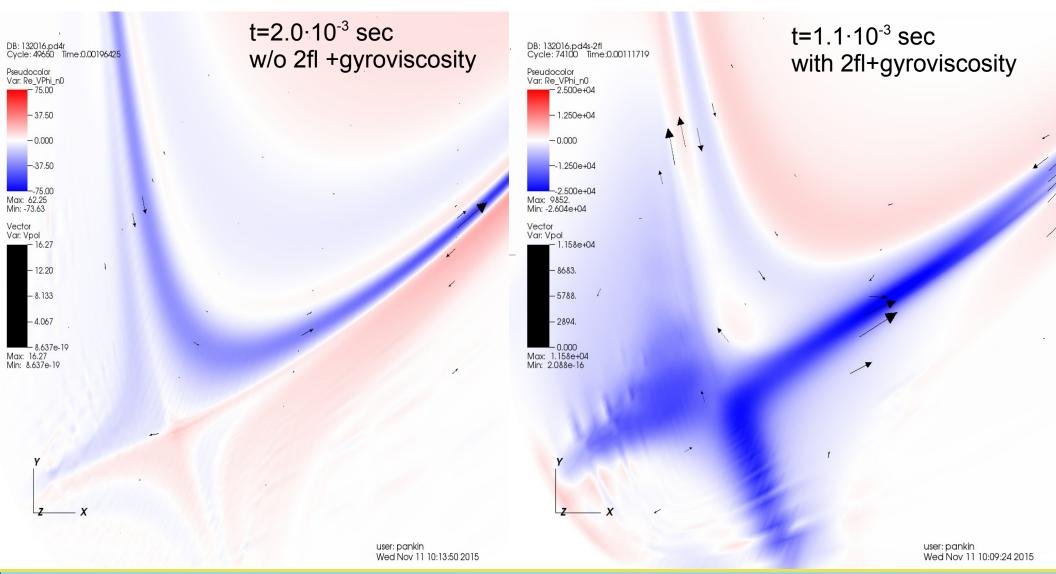
Effect of gyro-viscosity is tested

- Strong Toroidal velocity profiles in plasma core observed
- Small effect on the poloidal velocity profiles



Two-fluid and gyroviscosity effects

- Toroidal and poloidal velocities are enhanced


- Noticeable poloidal rotation in the plasma core

Two-fluid and gyroviscosity effects

Two-fluid simulations might require a better resolution

Summary

- •NIMROD code is used for transport modeling of velocity profiles in SOL of DIII-D discharges
- For experimental relevant plasma profiles of DIII-D discharge 132016
 - Resistivity gradient is found to have little effect on the poloidal and toroidal rotation profile at realistic values
 - 100x resistivity results in 10x poloidal fluxes in SOL
 - Gyro-viscosity is found to increase the toroidal rotation in the plasma core
 - Two-fluid effects are found important both for toroidal and poloidal flows
 - Two-fluid effects enhance the SOL poloidal flows by 1000x compared to poloidal flows computed using resistive MHD
 - Inital results are confusing and more analysis is needed
 - Lots to do: Boundary conditions, diffusivity profiles, DKE, ...
 - Need to calculate the widths as a post-processing diagnostic

Current Capabilities in NIMROD Relevant to ELMs

- Physics basis [C.Sovinec JCP 2004]
 - Complete Braginskii formulation is implemented
 - Hall term, gyroviscosity, ion parallel stress tensor [C.Sovinec JCP 2010]
 - Dissipation terms: resistivity, viscosity, thermal and particle diffusivities
 - Choice of closures: Braginskii, kinetic PIC [C. Kim PoP 2008], and continuum electron and ion drift-kinetic [E. Held PoP 2015]
 - Options to include neoclassical effects and ion orbit losses
 - NIMEQ [Howell CPC 2014] and FGNIMEQ [to be submitted] Grad-Shafranov solvers for pre-processing the experimental data
 - Modeling of neutrals is being implemented [Shumlak, U-Wash]
- Code development and performance improvements
 - Improvements of preconditioning options
 - Convergence of interchange modes [C. Sovinec to be submitted to JCP]
 - Scaling up to 65,000 cores
 - Development of selection of global and local upwinding schemes
 - Implementation of parallel hdf5 IO
- Improvement of visualization capabilities
- Verification and validation studies

SOL Width Modeling has not yet used extended MHD capabilities

- Understanding the physics of SOL width is important because the existing scalings are very unfavorable for ITER
 - It is important to understand the processes that control the SOL width in order to develop mechanisms to control it
- Most models for SOL width are neoclassical- or anomalous based models
 - Heuristic neoclassical model that estimates the SOL width from the balance of magnetic drifts and near sonic PS flows out of SOL to the divertor plates [Goldstone NF'12]
 - In anomalous transport models, SOL width is determined by a balance between parallel transport and cross-field turbulent transport [Myra PoP'15; Halpern NF'13]
 - Fluid modeling with UEDGE code often uses models for source/fluxes to give agreement with heuristic models
 - XGC0 based model [Pankin PoP'15] also needs "sub-grid model" for transport fluxes but has neoclassical effects included

