CEMM Meeting. Savannah GA, November 2015.

KINETIC MAGNETOHYDRODYNAMICS
WITH COLLISIONAL AND TWO-FLUID EFFECTS"®

J.J. Ramos

M.IL.T. Plasma Science and Fusion Center

*Work supported by the U.S. Department of Energy



INTRODUCTION

e KINETIC-MHD IS A USEFUL MODEL TO ANALIZE RESISTIVE WALL INSTABILITIES



INTRODUCTION

e KINETIC-MHD IS A USEFUL MODEL TO ANALIZE RESISTIVE WALL INSTABILITIES

e A K-MHD SYSTEM THAT IS INTRINSICALLY QUASINEUTRAL AND CONSISTENT
WITH MOMENTUM AND ENERGY CONSERVATION IS DISCUSSED HERE



INTRODUCTION

e KINETIC-MHD IS A USEFUL MODEL TO ANALIZE RESISTIVE WALL INSTABILITIES

e A K-MHD SYSTEM THAT IS INTRINSICALLY QUASINEUTRAL AND CONSISTENT
WITH MOMENTUM AND ENERGY CONSERVATION IS DISCUSSED HERE

e THIS SYSTEM INCLUDES COLLISIONAL AND TWO-FLUID EFFECTS, AS WELL AS
EQUILIBRIUM ROTATION



INTRODUCTION

e KINETIC-MHD IS A USEFUL MODEL TO ANALIZE RESISTIVE WALL INSTABILITIES

e A K-MHD SYSTEM THAT IS INTRINSICALLY QUASINEUTRAL AND CONSISTENT
WITH MOMENTUM AND ENERGY CONSERVATION IS DISCUSSED HERE

e THIS SYSTEM INCLUDES COLLISIONAL AND TWO-FLUID EFFECTS, AS WELL AS
EQUILIBRIUM ROTATION

e IN SUCH K-MHD SYSTEM, THE LINEARIZED DRIFT-KINETIC EQUATION ABOUT
AN AXISYMMETRIC EQUILIBRIUM WITH FAST TOROIDAL FLOW IS SIMILAR TO
THE TIME-DEPENDENT DRIFT-KINETIC EQUATION IMPLEMENTED IN THE DK4D
CODE [Lyons, Jardin and Ramos, PoP 2015]



TWO-FLUID, KINETIC-MHD MODEL

o SINGLE ION SPECIES OF UNIT CHARGE (¢; = —¢, = ¢)

e QUASINEUTRAL PLASMA (n; = n, = n)

e ZERO LARMOR RADII LIMIT BUT FINITE ION SKIN DEPTH (LOW-3))
o NEGLIGIBLE ELECTRON INERTIA

e MEAN FLOW VELOCITY OF THE ORDER OF THE SOUND SPEED

e LOW BUT NOT NEGLIGIBLE COLLISIONALITY



ZERO-LARMOR-RADIUS, TWO-FLUID, EXTENDED-MHD SYSTEM
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ZERO-LARMOR-RADIUS DRIFT-KINETIC EQUATIONS AND FLUID CLOSURES

fs(wH,wL,X,t) = (277)_1/027rd04 fs(w,x,t)

with w =V — u(x,t) = w b(x,t) + w, [cosa ej(x,t)+sina eyx,1t)]



ZERO-LARMOR-RADIUS DRIFT-KINETIC EQUATIONS AND FLUID CLOSURES

fs(wH,wL,X,t) = (2m)! 027rdoz fs(w,x,t)

with w =V — u(x,t) = w b(x,t) + w, [cosa ej(x,t)+sina ex,1t)]
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e THIS NON-LINEAR, TWO-FLUID, K-MHD SYSTEM IS OF THE "FULL-f” KIND,
WITH DISTRIBUTION FUNCTIONS THAT CAN BE ARBITRARILY DIFFERENT
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e DEFINING n?” = fd3W fs y Ds = (ms/?))fd?’w w? fs [ i.e. Ps — (ps|| + 2sz_)/3 ]'
ds| = (m5/2)fd3w w2 w fs AND Ggoll = (ms/Z)fdgw w2 >l Css’[fsvfs’] y THE
1, wy AND w? MOMENTS OF THE DRIFT-KINETIC EQUATIONS YIELD

kin
on;

5 + V- (nfruy) = 0 = nin = phn = n
/d3W wH fs =0
3 [Ops
S+ V)| + PO (V) Ve (gb) = G



INITIAL VALUE LINEAR ANALYSIS
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e WRITE THE STATE VECTOR [f;, f.,B,n,u] = ¥ AS

V(wy, wy,x,t) = Vo(w),wy, R, Z) + ¥y (w), w,X,1)

e LINEARIZE NEGLECTING TERMS QUADRATIC IN ¥; AND SOLVE THE INITIAL
VALUE PROBLEM FOR ¥, (w, w,,x,t)

e IDEALLY, Uy(w,w,, R, Z) SHOULD BE AN AXISYMMETRIC EQUILIBRIUM OF
THE COMPLETE SYSTEM. HOWEVER, IT IS DIFFICULT TO DERIVE SUCH
AN EQUILIBRIUM ANALYTICALLY WHEN FAST ROTATION, COLLISIONS AND
TWO-FLUID EFFECTS ARE INCLUDED
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e A POSSIBILITY IS TO USE FOR Vy(wy,w,, R, Z) AN AXISYMMETRIC EQUILIBRIUM
OF THE SINGLE-FLUID, COLLISIONLESS SYSTEM

e IN THIS CASE, WITH THE INITIAL CONDITION
Wy (wy, wy,x,0) = \fflﬁ(wH,wL,R, AR
THE TIME EVOLUTION OF THE LINEAR PERTURBATION IS

\Ijl(wﬂa wi, X, t) — \Ijl,O(wH) wy, R7 Z7 t) + \Ijl,n(wH) w, R7 Za t) GZTIC



MAXWELLIAN, SINGLE-FLUID COLLISIONLESS EQUILIBRIUM WITH TOROIDAL FLOW
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By = Vi x V¢ + (1) VC . jo—jiwxvc—wwc

u = Q) R* VC, (wp-Viug = —Q* RVR, V-uy = (bgbg): (Vuy) = 0

VXE():—VX(U.OXBQ):O, V'(nouo) =0



MAXWELLIAN, SINGLE-FLUID COLLISIONLESS EQUILIBRIUM WITH TOROIDAL FLOW

By = Vo x V¢ + I(¢) V¢, o = G VEXTC = A VG
u = Q) R* VC, (wp-Viug = —Q* RVR, V-uy = (bgbg): (Vuy) = 0
VXEO = —VX(U.()XB()) = 0, V'(nouo) =0

_ ms\3/2 n MW
fso = fuso = <—> TO/Q exXp (— )

2T T 2T
Ty = To(®),  no = no(th,R) = N() exp{g [Tﬂfﬁ(gw}



MAXWELLIAN, SINGLE-FLUID COLLISIONLESS EQUILIBRIUM WITH TOROIDAL FLOW

By = Vo x V¢ + I(¢) V¢, o = G VEXTC = A VG
u = Q) R* VC, (wp-Viug = —Q* RVR, V-uy = (bgbg): (Vuy) = 0
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LINEARIZED MAGNETOFLUID SYSTEM
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LINEARIZED DRIFT-KINETIC EQUATION
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SUMMARY

e A KINETIC-MHD MODEL IS PROPOSED TO ANALIZE THE LINEAR STABILITY
OF AXISYMMETRIC EQUILIBRIA WITH FAST TOROIDAL FLOW, INCLUDING
COLLISIONAL AND TWO-FLUID EFFECTS

e THE MAGNETOFLUID PART OF THE SYSTEM COMPRISES THE LINEARIZED
FORMS OF THE FARADAY-OHM LAWS, THE CONTINUITY EQUATION AND
THE MOMENTUM CONSERVATION EQUATION, THAT EVOLVE B;, n; AND u,

e THE KINETIC PART YIELDS THE FLUID CLOSURES p,; , p,.1 AND Fl AS
MOMENTS OF THE GYROPHASE-INDEPENDENT DISTRIBUTION FUNCTIONS f,;.
THESE EVOLVE WITH LINEARIZED DRIFT-KINETIC EQUATIONS THAT ARE
CONSISTENT WITH THE FLUID CONSERVATION LAWS



