
Status of the M3D-C1 hybrid kinetic 
energetic ion module 

Josh Breslau 
 

Acknowledgments: 
Steve Jardin, Nate Ferraro, Guoyong Fu, Kaushik Kalyanaraman 

 
 
 
 

CEMM Meeting 
San Jose 

October 30, 2016 



Outline 

• Specification of task 
• Implementation 

– Particle loading 
– Particle push 
– Pressure deposition 
– Fluid coupling 
– I/O & Diagnostics 

• Summary & next steps 

2 



Specification of task 
• Goal is to add the option to advance an ensemble of fast particles on the 

M3D-C1 domain using particle-in-cell (PIC) techniques. 
– Start with beam ions. 
– Particle time step may be sub-cycled relative to fluid step. 
– Use high-order integration for accuracy. 

 
• Support multiple physics models 

– Full orbit (Lorentz force, non-relativistic) 
– Drift-kinetic: advance guiding center equation of motion, conserving constants 

of motion 
 
 
 
 
 

 
• No collisions. 
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Drift kinetic equations of motion 
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The δf method 
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To minimize noise for linear problems, represent the energetic population distribution 
function as f(x,v,t)=f0(x,v) + δf(x,v,t), where the former is an analytic function and only 
the latter is constructed from the particle ensemble, with weights wi evolving from 
zero according to 
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Pressure coupling 
• Assumes hot ion density is negligible but β is significant: 

where 
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• Applying the Galerkin finite element method, construct scalar 
pressure fields by weighted integration over delta-function sources 
and solve: 
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Particle loading 
• Implemented in subroutine init_particles(). 

 
• Physical space initialization: uniform over (R,ϕ,z) 

cube with Jacobian to ensure uniformity over d3x.  
Particles outside mesh rejected. 

Sample spatial distribution 
over four-partition KSTAR 
mesh: 
5840 / 8192 = 32 x 8 x 32 
particles deposited. 
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Velocity space initialization 

• Original implementation: uniform on 2D grid of 
0<E≤Emax=10 keV; 0≤λ≤π. 
 

• Coordinates transformed to (vR, vϕ, vz) (full-orbit) or 
(v||, µ/q) (drift-kinetic). 
 

• New implementation: use Jacobian to initialize 
distribution uniformly on d3v, with 
0<|v|<sqrt(2Emax/m). 
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Equilibrium particle distribution 
• Maxwellian implemented: 

 
 

 
• Slowing-down beam distribution planned: 

10 

( )
2

2

3

2
0

1,
2

th

v
v

th

f e
v π

− 
=   
 

x v

( ) ( )0 0
0 3/2 3/2

0

exp /
, ,

P P
f ς ψ

ε ε
=

+
x v

where 

( )P gς ψ ρ ψ= −


is the canonical poloidal momentum. 
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Notes on particle loading 
• Particle module initialization loads a two-layer ghost mesh for 

MPI particle handoff bookkeeping. 
– Requires reallocation and redefinition of intermediate coefficient 

arrays. 
– Ghosts must be destroyed and arrays redefined again before 

resumption of fluid advance. 
 

• Electric field components must be explicitly computed prior to 
particle advance. 
 

• Global particle time step is a predetermined fraction (full 
orbit) or multiple (drift-kinetic) of the minimum gyroperiod. 
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Particle advance overview 
• Subroutine advance_particles() advances all particle positions, 

velocities by a specified time increment, using given 2D (real 
or complex) or 3D fields, subcycling as necessary. 
 

• Hierarchical organization of particles by element, element 
ensemble, OMP thread, and MPI/mesh partition allows good 
optimization. 
 

• 4th- and 5th-order Runge-Kutta ODE integration are available; 
both show good energy, Pϕ conservation over many time 
steps. 
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Particle advance example 
• Coarse KSTAR mesh (776 elements in four domains). 
• Initial distribution: 16 x 1 x 16 x 1 x 6 = 1536 candidates. 
• 1104 candidates accepted, 432 rejected. 
• Particles/cell range from 1.24 to 1.70; overall avg = 1.42. 
• Drift-kinetic formulation, 4th-order RK stepping, 2D complex fields. 
• 5000 steps, dt (drift-kinetic)=10-7 s ≈ 5 gyroperiods. 
• Execution time: 123.4 s on four PEs (one thread/PE). 
• 557 particles remain by end of run. 
• Max δKE/KE0 = 9.4×10-4; mean = 7.8×10-7; rms = 1.15×10-4. 
• Max δPϕ/ Pϕ0= 2.7×10-4; mean = -1.3×10-6; rms = 4.60×10-5. 

 
• 5th-order RK: 136 s. Max δKE/KE0 = 3.7×10-4; rms = 6.05×10-5. 
                                         Max δPϕ/ Pϕ0= 1.9×10-4; rms = 2.20×10-5. 
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Particles on open field lines exit promptly 
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Time step 

Approximate toroidal orbital period 
for passing particles 

Initial 1104 particles 
Final 557 particles 

This phenomenon can exacerbate the load imbalance for a domain-decomposed mesh! 

M3D-C1 mesh bounding box 



Sample passing orbit (λ0 = 10-5) 

• Initial KE=9.9995466e+03 eV; final=9.9995466e+03. 
• Initial Pϕ=-0.52531 eV s; final=-0.52530. 

R-z plane projection 

Colors indicate MPI rank. 
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Sample trapped orbit (λ0 = 3π/5) 
• Initial KE=9.9995e+03 eV; final=9.9990e+03. 
• Initial Pϕ=-0.476633; final=-0.476630. 

Colors indicate advancing time. 

R-z plane projection 
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Drift-kinetic/full-orbit comparison 
• Full-orbit: 20,480 steps, pdt (drift-kinetic)=10-10 s ≈ 0.005 

gyroperiods. 
• Execution time:  19:50.6 s for 1104 particles on four kruskal PEs. 

Detail 

• KE conservation for full-
orbit is good, but angular 
momentum conservation 
is relatively poor; consider 
alternate integrators. 

 
• A drift-kinetic step is 
about twice as fast as a 
full-orbit step, and can be 
around 1600x larger for 
comparable accuracy. 
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Preparing to scale up 
• With sufficient particles for accurate phase space resolution, the 

particle advance could dominate the overall M3D-C1 execution 
time.  If the particle advance scales well to 10,000+ cores, M3D-C1 
should scale well too. 
 

• The current bottleneck is load imbalance: particle number differs 
dynamically between cores. 
 

• Two possible solutions are under consideration: 
– Maintain a copy of global mesh and relevant global field data on every 

shared-memory node. 
• Pros: Eliminates need for ghost layers, memory needs are not excessive. 
• Cons: Redundancy or all-to-all communication; will not scale to arbitrary 

mesh size. 
 

– Use differing domain decompositions for fluid/particle sections, 
dynamic load balancing. 

• Pros: All communications are nearest-neighbor, should win at large 
enough scale. 

• Cons: Complexity, rebalancing overhead. 
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Pressure deposition 
• RHS vectors for p||, p⊥ are computed by integrating over 

particle delta functions within each element. 
– Makes use of SCOREC routine vector_insert_block(). 
– Element loop could be multithreaded, but race conditions could be 

tricky, and time saved appears to be small compared to particle push. 

 
• LHS vectors computed by subroutine solve_pi_tensor(), which 

inverts mass matrix to solve for each component. 
– Very fast (time is independent of particle count). 
– Requires deletion of ghost mesh, recalculation of coefficient arrays, 

which is awkward. 
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Fluid coupling: velocity projections 
• All terms in (14) must be projected to the M3D-C1 velocity 

representation: 
 

 
• The appropriate projection operators to extract the scalar 

components of the momentum equation are, respectively 

2 2: iU d R Rν ϕ ⊥∇ ∇ ×∫∫ 

2 2: id R Rω ν ϕ∇∫∫ 
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Preliminary definitions 
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Poloidal velocity stream function U 
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Toroidal angular velocity ω 
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Poloidal compressible velocity potential χ 
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I/O & Diagnostics 
• The particle_test() subroutine writes out the entire trajectory 

of a predetermined subset of particles, tracking KE and Pϕ. 
– Trajectory text files are compatible with VisIt Point3D format for 

scatter plotting. 
 

• Parallel HDF5 is used to dump the entire particle distribution 
at a given time to an output file, including positions, 
velocities, and weights. 
– Utilities exist to extract position data from these to a text file, enabling 

comparisons and plotting with VisIt. 
– Utilities to visualize velocity distributions, pressure tensor components 

are still under development. 
 

• Checkpointing of particle distribution will be based on HDF5. 
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Summary 
• Particle initialization, full-f push, and I/O now 

working, tested and highly optimized for 2D 
complex version. 
 

• Pressure deposition, δf push implemented; 
need testing. 
 

• Fluid coupling in progress. 
 



Next steps 
• Verify hot ion pressure tensor component deposition 

algorithm, adjust normalization as necessary. 
 

• Implement explicit ∇•Πion term in fluid momentum equation. 
 
• Implement particle checkpoint restart. 

 
• Verify 2D complex version of kinetic code with fishbone test 

case. 
 

• Develop visualization tools for velocity distributions. 
 

• Generalize to 3D, nonlinear cases. 
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