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Applications of M3D-C1 Focus on
Stability, 3D Equilibria, and Disruptions

e Stability
— Classical tearing stability; locked modes
— EHO stability in QH-mode discharges
— Effect of pellet injection and pedestal structure on ELM stability

e 3D Equilibria

— Plasma response in ELM-mitigation experiments (Lyons)

* Disruptions

— Nonlinear evolution of VDEs (Pfefferlé) and tearing modes



New Pellet Modeling Capabilities Are
Being Applied to ELM Stability

* Parks model of pellet ablation

implemented by Alex Fil (PPPL) ST S
» Effect of density “bumps” on ELM
stability explored by Steffi Diem (ORNL)
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Ongoing & Future Development Emphasizes
Integrated Modeling and Disruptions

e Coupling with gyrokinetic codes (XGC, GTC) for calculating
transport in 3D geometry

— Goal is to understand how transport due to 3D fields affects pedestal
structure

* Implementation of self-consistent fast ion species (Breslau)

* Integration with edge codes & improved edge modeling
— Neutrals, radiation

* Disruptions are a primary focus

— VDE calculations are being done to predict wall forces in NSTX-U and
guide diagnostics development (Pfefferle)

— M3D-C1 calculations are being used as a basis for RE modeling
(Hirvijoki)
— How do instabilities lead to disruptions?



Resistive Wall Modes



RWMs in Shafranov Equilibrium Have
Analytic Solution for Code Verification

* Circular cross-section, cylindrical plasma with constant ¢, current
density (J,) and mass density (p,) (Shafranov equilibrium)

e Analytic thin-wall solution provided by Liu et al. Phys. Plasmas 15,
072516 (2008)

Wall time: Ty = Pybd/(2ny)
Alfven time: T, = (1,0,)"? Ry/B,
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M3D-C1 Reproduces Analytic
RWM Result in Thin Wall Limit

* Growth rate calculated using linear, time-dependent calculation

 M3D-C1 agrees with analytic growth rate in both
resistive-wall (t, << tyy) and no-wall (T, << T, ) limits
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Complete Rotational
Stabilization of RWM Observed

 Reduced-model (2-field) calculations show stabilization of
RWM by toroidal rotation

— w=wy(1-Yy)
* Qualitative agreement with 5 Ty R
Pustovitov model* : —_ Thick wall (d/b=0.5)

........ Pustovitov Model

— V=V, [1-(w/w.)?]wherey,is
the growth rate with no rotation
and w_=2y,/n

E 3
— Pustovitov model derived in ‘;
thick wall limit with uniform
rotation

e Need to revisit calculations to

determine mode frequency
vs. plasma rotation (@o/2) Tw

*Pustovitov Nucl. Fusion 53 (2013) 033001



Wesson Equilibrium has Smooth Profiles;
Amenable to Solution with Full Model

Safety Factor
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* Fully compressible, resistive single-fluid MHD model
* S, = 10°; Viscosity, thermal conductivity = 0.2 m?/s

* Scan g, while holding ¢, = 1.1 constant



Resistive Wall Modes and
Wall-Stabilized Tearing Modes are Found

Resistive Wall Mode € | = Wall-Stabilized Tearing Mode
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* Transition between two modes is smooth because resistivity
across limiting surface is smooth



Current Density in RWM Eigenmode
Peaks Wherey = 5,

P o
* In RWM eigenmode, current density
peaks at the “edge” of the plasma E T
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RWM is Completely Stabilized by Rotation

Uniform toroidal rotation is considered
q,= 1.8 Ty = 0.23 ms 2n/ty, = 27 krad/s
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« RWM growth rate appears to be linear function of mode
frequency
— Complete stabilization is found when ogy\Tw ~ 25



RWM Eigenmode is Sheared by Rotation

 Uniform toroidal rotation is considered

q,= 1.8 Ty = 0.23 ms
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Quasilinear Torque is Maximum
When ® ~ 27/t

JXBg

“Accelerating torque inwall | ¢ Net quasilinear torque on plasma
¥ ] always opposes mode rotation
— Equal and opposite to torque on wall

'~ * Torque deposition inside plasma
j | changes with ®gwy

— Braking near peak of current density
ok ] — Low gy Acceleration outside mode peak
— High oy Acceleration inside mode peak

- Braking torque at mode peak
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Ultimate Goal is to Address
Disruption Physics

* VDE calculations (David Pfefferlé)

— Demonstrated capability to simulate resistive timescales
— Quantitative agreement with Halo current measurements

* Nonlinear calculations of RWMs, Tearing Modes, and
Locked Modes are being considered
— How do these instabilities lead to disruptions?

— Nonlinear M3D-C1 calculations of these instabilities tend to
show mode saturation, not disruption

— Need more physics? Radiation / impurity transport?
— Need More realistic equilibria that are less “passively stable”?
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Nonlinear Modeling of Tearing Modes
hows Recover to 3D Equilibrium
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* Loop voltage is applied to maintain current and provide heating

* TM fully stochasticizes plasma, but plasma recovers!
— Open field line region is never stochasticized, despite resistive wall

e Effort is underway to model disruptions via radiative islands (Teng)
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Optimization of M3D-C1 for HPC
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M3D-C1 Kernel was Optimized for KNL
at NESAP “Dungeon Session”

* NESAP = NERSC Exascale Science Applications Program

— Collaboration between NERSC, Cray, Intel, and physics applications
groups to optimize codes for KNL

* KNL = Intel’s “Knight’s Landing” compute nodes
— Will be used on Cori Phase Il
— 68 cores / node
— 94 GB DDR4 memory (on Cori ll), peak bandwidth 100 GB/s
— 16 GB MCDRAM / node, peak bandwidth 460 GB/s

 We optimized two M3D-C1 kernels at “Dungeon Session” at
Intel in August

— Matrix assembly kernel (not including communications)
— PIC particle pushing kernel



2.8x Speedup Achieved for
Matrix Assembly Kernel on KNL

* Replaced loops with level 2 & 3 BLAS
* Forced inlining of some functions w/ IPO
* Moved conditional outside loop to eliminate bad

3

2.5

speculations
dgemm
matmul
loop order loop order
and array /
order
daxpy

1 2 3 4 5 6

moved
replaced another conditional
loop with dgemv reordered
fterm array
inlined some
functions w/ IPO
/ 8 9 10



Optimized Kernel Shows Improved
Performance on KNL node vs. BDW

CPU seconds

 OpenMP and MPI scaling both nearly perfect up to 1 thread/core

* No speedup from multiple OMP thread/core

— Threads use full L2 cache

« BDW is 15% faster per core, but KNL is 40% faster per node

3000

300

KNL OMP

KNL MPI

BDW OMP
BDW MPI

1 10

1
Threads

00

300

KNL OMP
KNL MP]

£ BDW OMP

= 30 BDW MPI

=

3
1 10 100 1000

1000 Threads



Conclusions from KNL Optimization Exercise

* Don’t try to outsmart compiler
— Manually changing loop order, data alignment, etc. never improved
things
— Architecture-specific optimizations will make code messy and won’t be
portable

Inlining helps compiler optimize loops
— Enable IPO when functions are in separate Fortran source file

Use Intel MKL BLAS as much as possible

— These are very well optimized for KNL
— BLAS calls will be portable to other architectures

* Optimizing full code will require optimized sparse solvers



Upcoming Opportunities Will Require
More Than Code Optimization

* Upcoming SciDAC calls will have increased emphasis on HPC

* How can we take advantage of future HPC systems?
— PDE solves won’t scale well

— Ensemble runs (parameters scans, UQ) will be useful, but probably
discouraged

 “Multiphysics” is probably the answer
— Calculations of kinetic closures
— Detailed local physics (e.g. atomic physics)
— “Whole-device” modeling

* Challenge: WDM only makes sense when components are
coupled; yet coupling makes scaling difficult



M3D-C1 at APS

 ELM Pellet pacing
— Pellet ablation models and nonlinear evolution of kinetic profiles (Fil PP10.64)
— Linear ELM stability in presence of density perturbations (Diem PP10.65)

e Perturbed equilibrium calculations
— Toroidally localized turbulence from perturbed pressure profiles (Wilcox CO4.13)
— Perturbed equilibria in RMP ELM-mitigated discharges (Lyons GP10.85; Park JO9.7)
— Transport in RMP ELM-mitigated discharges (Callen PP10.70; Hager PP10.61)
— Plasma response in snowflake geometry (Canal NP10.30)
— Error field correction (Myers GO6.2) and penetration (Beidler GP10.76)
— Effect of RMPs on divertor geometry (Shafer PP10.62)

* Nonlinear evolution
— Sawtoothing / Hybrid-like plasmas (Krebs GP10.87)
— Tearing modes (Teng GP10.79)



