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Existing drift kinetic equations (DKEs) in NIMROD

I NIMROD can solve
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for electrons, ions and energetic ions.

I Typically solve for δ f beyond a �xed f0:

Neoclassical transport: f0 = fM(ψ(R,Z ),s) = ne−s
2

/(π3/2v3
0

)

Energetic ions: f0 = fslow(R,Z ,s) + ftail = A/(1+ s3) + ftail



Aspects of existing DKE implementation

I Relatively easy applications include:
- solving for electron and ion δ f 's to predict neoclassical
transport in axisymmetric toroidal geometry
- advancing energetic particle δ f and coupling to MHD
through closure for anisotropic pressure tensor.

I Numerical formulation relatively easy since thermodynamic
drives have a simple form.

I Allowed for easy testing of important DKE terms like collision
operators, parallel free-streaming and particle trapping.

I But, for incorporating kinetic e�ects of bulk species in long
time scale �uid simulations, it is likely best if DKE solutions
only contain kinetic information for closing the �uid equations.



Chapman-Enskog-like (CEL) DKEs in NIMROD

I Assume f = fM + fNM with f̄NMe = O(δ 2fMe) and f̄NMi = O(δ fMi).

I Write CEL-DKE in the �uid frame (Ramos, Phys Plasmas 17,
082502 (2010)):
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De�nition of closure moments

I Desired closure moments computed using random velocity:
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Fluid moments equations - electrons

I Low-order electron �uid moments evolve according to
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Aspects of CEL-DKE formulation

I Allows for a tight coupling, i.e., hybrid �uid/kinetic capability
that is rigorous and consistent: 1, v ′‖ and v ′2 moments of f̄NM

vanish.

I DKEs written in moving frame of �uid makes taking moments
easy.

I Numerical considerations:
- time centering of �uid and kinetic variables,
- enforcing the requirement that �uid moments of f̄NM vanish,
- ability to evolve linearized system that expands about an
axisymmetric f̄NM and its closure moments.



Spitzer problem veri�cation

I Advance coupled system for �ows and electron CEL-DKE.
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I In δ f approach �ow is carried by δ f .



Spitzer conductivity recovered

I CEL-DKE and δ f DKE approaches agree.



Conservation properties of ξ bases

I Flow moments of f̄NMe arise for both Legendre and FE ξ bases.

I Density moment of f̄NMe remains zero for Legendre basis.



Flow conservation depends on speed grid.

I Re�ning speed grid improves �ow conservation but should
consider projecting out Maxwellian moments.



CEL-DKE/NIMROD coupling

I Treating all f̄NM terms implicitly is desirable but couples entire
velocity grid.

I Assume electrons present biggest timestep limitation: center n,
B and Te in f̄NMe advance.

I Most basic advance:
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Linearization example

I Consider linearizing stress drive in CEL-DKE:
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I Linearization aided by computing structures like δb,
δ (b ·∇ lnB), and δκ = δ (b ·∇b).



Conclusions

I Further testing underway: neoclassical transport, tearing
modes, parallel electron heat transport ....

I Apply �rst-order, electron CEL-DKE to NTM problem.

I Apply �rst-order, ion CEL-DKE to study �ow damping or
thermal ion e�ect in GS problem.

I Implement second-order terms in ion CEL-DKE?


