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Motivation is to enhance understanding of QH-mode

• Quiescent H-mode is an  
operational regime without 
edge-localized modes (ELMs)
[Burrell PoP 19 2012 and 2015]

• QH-mode addresses several 
requirements of ITER/DEMO 
operation 
[Garofalo PoP 22 2015 → figure]
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QH-mode is accompanied by low-n perturbations

• Hypothesis: the saturated pert. drives particle and thermal transport 
to maintain steady state pedestal profiles [Snyder NF 2007]

• How well can MHD modeling characterize the low-n perturbations 
observed during QH-mode?

• Published nonlinear results: NIMROD code [King NF 57 2017] & 
JOREK code [Liu NF 2015] 
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[Garofalo PoP 22 2015]
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Low-n dynamics during QH-mode discharges can be 
modeled with extended-MHD

• Critically dependent on inclusion of flow 
– With flow → low-n saturation
– Without flow (shear) →  high-n dynamics 

• Our simulations find a quasi-turbulent-MHD state that drives transport 
in the pedestal
– Pressure and current gradients are relaxed → saturation
– Flow profiles are largely unchanged
– Fluctuation amplitudes and phases lead to larger edge convective particle 

transport relative to the thermal transport

• Mode rotates faster than experimental measurements
– Indicates limitation of model: need two-fluid and/or resistive wall
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Extended-MHD codes start from reconstructed state

• Initial state: reconstructed from 
measurements constrained by force 
balance  

• Assume: 2D evolution of this state is on 
transport time scale

– Transport requires effects outside the scope of 
MHD: e.g. neutral-beam, high-k turbulence and 
neoclassical effects

• Model: NIMROD code [Sovinec JCP 04] 
evolves 3D, nonlinear perturbations 
around 2D steady state 

– Perturbations may modify the axisymmetric 
(n=0) state

– Consistent with reconstruction when n=0 
modification is small

Initial state: DIII-D QH-mode shot 145098 at 
4250 ms while the discharge is ELM free with 
broadband MHD (chosen because it is a low-
torque discharge relevant to ITER)

145098
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Low-n dynamics during QH-mode discharges can be 
modeled with extended-MHD

• Critically dependent on inclusion of flow 
– With flow → low-n saturation
– Without flow (shear) →  high-n dynamics 

• Our simulations find a quasi-turbulent-MHD state that drives transport 
in the pedestal
– Pressure and current gradients are relaxed → saturation
– Flow profiles are largely unchanged
– Fluctuation amplitudes and phases lead to larger edge convective particle 

transport relative to the thermal transport

• Mode rotates faster than experimental measurements
– Indicates limitation of model: need two-fluid and/or resistive wall
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Access to QH-mode requires control of the flow profile

[Garofalo PoP 22 (2015) ] • In particular, large ExB shear is 
correlated with QH-mode operation

[Garofalo NF 2011]

157109
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Simulations are performed with and without steady-
state flow

• Steady-state toroidal and poloidal 
flows are inferred from measurements

• Identical initial perturbations for 
simulations with and without steady-
state flow

• Flow (and current) are extrapolated to 
zero in the SOL region [King PoP 
submitted]

• NIMROD simulation uses a single-fluid 
MHD model with Braginskii parallel 
closures
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Perturbation amplitudes saturate to a quasi-turbulent 
state in simulations with steady-state flow

• Simulation initialized with low-n (1-8) small perturbations
• n=4,5 dominant during linear [0-0.03 ms] and early saturation 

[0.05-0.13 ms] stages 
• Inverse cascade: n=1,2 dominant later [>0.15ms]
• As simulation progresses → continued interplay between 

perturbations with amplitude modulations

0 5,4
1,2
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Without steady-state flow, high-n perturbations 
become dominant without saturation

• Initialization is identical to simulation with 
steady-state flow

• Simulation stops with perturbations at 
limit of the spatial resolution

• Low-n dynamics are sub-dominant

• Consistent with extended-MHD ELM 
simulations

23

Final state
t=0.167 ms
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Importance of steady-state flow to low-n saturation is 
consistent with experimental observations

0 5,4
1,2

23

Consistent with exp. 
observations that 
QH-mode access 
requires large edge 
flow shear

Without steady-state flow → high-n dynamics

With steady-state flow → low-n saturation

23
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Returning to simulations with steady-state flow, 
pressure evolution resembles quasi-turbulent state

• Initial eddies 
advected by flow

• Sheared apart at 
finite amplitude 
– [Guo PRL 2015]

• Leads to quasi-
turbulent state

• Can we quantify the 
transport driven by 
these perturbations?
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Low-n dynamics during QH-mode discharges can be 
modeled with extended-MHD

• Critically dependent on inclusion of flow 
– With flow → low-n saturation
– Without flow (shear) →  high-n dynamics 

• Our simulations find a quasi-turbulent-MHD state that drives transport 
in the pedestal
– Pressure and current gradients are relaxed → saturation
– Flow profiles are largely unchanged
– Fluctuation amplitudes and phases lead to larger edge convective particle 

transport relative to the thermal transport

• Mode rotates faster than experimental measurements
– Indicates limitation of model: need two-fluid and/or resistive wall
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Characterization of transport requires understanding 
of boundary conditions

• Computational domain is 
toroidal and annular
– Annulus avoids potential core 

instabilities 

• Dirichlet (n,T=constant) 
boundary conditions applied
– Provides unconstrained source of 

particles and energy on axis
– Prevents edge perturbations 

from simply ‘pumping out’ core 
particles and temperature

Density (m-3)
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Pressure and current density profiles are flattened 
leading to saturation

• Free-energy gradients 
are reduced

• Flow modifications are 
small

• Saturation is related to 
pressure and current 
modifications, not flow

LCFS
         Perturbations

Time- and
flux-surface-
average profiles
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Experimental observations indicate that QH-mode 
dynamics drive particle transport

• Fluorine impurity transport 
studies find QH-mode 
provides as much particle 
transport as 40 Hz ELMs  
– Shown in comparison 

discharges on DIII-D from 
[Garofalo PoP 2015]

– Green – ELMing H-mode
– Blue – QH-mode with EHO

• Typically, QH-mode core 
temperatures are increased 
similar to the density pump-
out effect observed in 
discharges with RMP fields
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Magnetic field-lines become stochastic within the 
pedestal region

• Anisotropic thermal 
conduction in model: 
–  χ||=108 m2/s 

• approximate ion value 
with Ti=1 keV

– Expectation of dominant 
conductive transport 

– Would lead to thermal, 
not particle, transport 
unlike experiment

Field-line
length (m)
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Flattening of density profile is large compared to 
temperature profile

• Result is surprising with stochastic fieldlines and 
large anisotropic thermal conduction

• Qualitatively consistent with observations of density 
pump-out during QH-mode

LCFS
Stochastic region

Time- and
flux-surface-
average profiles

R(m)R(m)
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Fluctuation-induced transport is dependent on the 
relative perturbation phases

• Density and temperature equations differ substantially with 
anisotropic thermal conduction

High density

Low density

Density
contour

Hot

Cold

Temperature
contour

In-phase flow Out-of-phase flowcoreIn-phase flow

edge

χ
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=108 m2/s

D
n
 = χ


=1 m2/s
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Phase differences enhance particle transport relative 
to thermal transport

• Convective transport 
impacted by the 
phase relative to the 
perturbed normal 
flow
– Density → In phase 

with normal flow
– Temperature → mixed 

phase relative to flow
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Timescale estimates show convective transport 
dominates conductive losses

• The conductive losses 
are small even with an 
estimate in the 
collisionless limit

Phase and
amplitude
impact
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Phase and amplitude differences explain convective 
transport

• Fluctuation-induced 
density transport is 
much larger than 
thermal transport

• Density perturbations 
are larger than 
temperature 

• Flux difference must be 
due to the relative 
phases

n=4,5

total flux
other
modes

Time- and flux-surface averages from 0.03-0.09 ms
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Low-n dynamics during QH-mode discharges can be 
modeled with extended-MHD

• Critically dependent on inclusion of flow 
– With flow → low-n saturation
– Without flow (shear) →  high-n dynamics 

• Our simulations find a quasi-turbulent-MHD state that drives transport 
in the pedestal
– Pressure and current gradients are relaxed → saturation
– Flow profiles are largely unchanged
– Fluctuation amplitudes and phases lead to larger edge convective particle 

transport relative to the thermal transport

• Mode rotates faster than experimental measurements
– Indicates limitation of model: need two-fluid and/or resistive wall
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Frequency analysis shows simulated rotation to be 
much faster than observations

• Need to include two-fluid and/or resistive wall in model?

• Two-fluid effects modify frequencies [e.g. Coppi PF 64; 
King PoP 14]

Simulation: probe at R=2.22m
Exp. magnetic 
coil analysis
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Open questions remain

• Two-fluid effects change frequencies through differential electron motion 
– clear need to incorporate → Does this produce frequencies consistent with 

experiment?

• Can we distinguish broadband and edge harmonic oscillation (EHO) 
perturbations with modeling?
– Likely requires at least two-fluid modeling as perturbations rotate in different directions

• Can we predict power flow from perturbations?
– Constrained by experiment
– Currently model uses enhanced dissipation for computational practicality without heating 

→ power prediction requires realistic dissipation and heating
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Magnitude of 
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Low-n dynamics during QH-mode discharges can be 
modeled with extended-MHD

• Critically dependent on inclusion of flow 
– With flow → low-n saturation
– Without flow (shear) →  high-n dynamics 

• Our simulations find a quasi-turbulent-MHD state that drives transport in the 
pedestal
– Pressure and current gradients are relaxed → saturation
– Flow profiles are largely unchanged
– Fluctuation amplitudes and phases lead to larger edge convective particle transport 

relative to the thermal transport

• Progress required: 
– Accurate equilibrium from experimental data
– Verification to understand accuracy requirements [King PoP 2016]
– Extrapolation of profiles into SOL region [King PoP submitted]
– Close collaboration with DIII-D team
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• QH-mode is accompanied by low-n perturbations
• Low-n dynamics during QH-mode discharges can be modeled with extended-MHD
• Extended-MHD codes start from reconstructed state
• Low-n dynamics during QH-mode discharges can be modeled with extended-MHD
• Access to QH-mode operation regime requires control of the flow profile
• Simulations are performed with and without steady-state flow
• Perturbation amplitudes saturate to a quasi-turbulent state in simulations with steady-state flow
• Without steady-state flow, high-n perturbations become dominant without saturation
• Importance of steady-state flow to low-n saturation is consistent with experimental observations
• Returning to simulations with steady-state flow, pressure evolution resembles quasi-turbulent state
• Low-n dynamics during QH-mode discharges can be modeled with extended-MHD
• Characterization of transport requires understanding of boundary conditions
• Pressure and current density profiles are flattened leading to saturation
• Experimental observations indicate that QH-mode dynamics drive particle transport
• Magnetic field-lines become stochastic within the pedestal region
• Flattening of density profile is large compared to temperature profile
• Phase and amplitude differences explain convective transport
• Fluctuation-induced transport is dependent on the relative perturbation phases
• Phase differences enhance particle transport relative to thermal transport
• Timescale estimates show convective transport dominates conductive losses
• Low-n dynamics during QH-mode discharges can be modeled with extended-MHD
• Frequency analysis shows simulated rotation to be much faster than observations
• Open questions remain
• Low-n dynamics during QH-mode discharges can be modeled with extended-MHD
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We use NIMROD to model the MHD evolution 
of low-n perturbations 

Sovinec et al., JCP 2004
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For these edge cases, reconstruction is 
modified to include SOL profiles

• Non-zero pressure gradient 
produces non-zero current at 
LCFS
– Reconstruction: discontinuous p
– Experiment: continuous p

• Use Thomson measurements to 
guide extrapolation of p outside 
LCFS

• Resolve Grad-Shafranov Eqn → 
enforce force balance
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Including SOL profiles eliminates problematic 
discontinuous current at LCFS

• Divertor current 
limited by ion sat. 
current [~105 A/m2]

• Linear stability not 
affected by inclusion 
of SOL profiles

• Perturbation 
dynamics are not 
impacted by SOL 
footpoints

• See King PoP 
submitted
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