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Theory of ELM suppression by 3D fields stillincomplete

- External 3D magnetic perturbations are routinely used to
mitigate or to suppress edge-localized modes (ELMs)
- Early theoretical work predicted that
— Vacuum fields would produce overlapping islands in edge
— Stochastic transport would inhibit pedestal growth
- Recent results inconsistent with formation of stochastic layer
— Electron temperature gradient not observed to decrease
— Electron rotation predicted to screen vacuum islands in edge

- Current theory requires on island opening only at pedestal top

— Observed that zero-crossing of electron rotation aligns with rational
surface at top of pedestal during suppression
— Theory predicts
Low rotation permits penetration of resonant field
Island arrests growth of pedestal height and width
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Extended-MHD analysis can inform this theory

« Comprehensive model needed for pedestal evolution across
ELM-suppression bifurcation

— Extended MHD
« Time-dependent (for evolution)
Nonlinear (for island saturation)
Two-fluid (for electron rotation physics)

— Appropriate transport model, particularly for the momentum
- Current research focuses on individual components of model
- Here, we explore how rotation profiles affect single-fluid

M3D-C1 plasma response, including

— Resonant field

— Non-resonant field

— Observable quantities

— Quasilinear electromagnetic torque
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M3D-C1 [ ] solves the extended MHD equations

* Three-dimensional

* Includes resistivity, density diffusivity, viscosity, & thermal conductivity
«  Two-fluid effects (optional)

* Linear and nonlinear modes

« High-order, C! continuous finite element representation

*  Mesh adapted to input equilibrium
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[2] N.M. Ferraro et al., Phys. Plasmas 23, 056114 (2016)
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M3D-C1 allows for extended MHD simulations of the

plasma response to applied 3D fields

* Plasma response calculations
presented here

— Linear n=2 (single toroidal
mode number)

— Single-fluid
— Mesh adapted to equilibrium

— Resistive wall model allows for —
free-boundary-like simulations Nt
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M3D-C1 allows for extended MHD simulations of the

plasma response to applied 3D fields

«  Plasma response calculations
presented here

— Linear n=2 (single toroidal
mode number)

— Single-fluid
— Mesh adapted to equilibrium

— Resistive wall model allows for
free-boundary-like simulations 2
* Time-independent 3D N
equilibrium calculated in
response to static
perturbation field

Applied field
Sl nf
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M3D-C1 allows for extended MHD simulations of the

plasma response to applied 3D fields

- Plasma response calculations Plasma response
presented here

— Linear n=2 (single toroidal

mode number) Hor
— Single-fluid ’
— Mesh adapted to equilibrium 05
— Resistive wall model allows for
free-boundary-like simulations E
* Time-independent 3D N ’

equilibrium calculated in
response to static
perturbation field
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Fourier specirum provides insight to plasma response

" - om)’ ([ OBV .. o
 Fourier field decomposition: 5an(\1/)=(jl) / / Tvgbez<me "?)dfdy

- These SURFMN-like diagrams show magnitude of Fourier components
— m - Discrete poloidal harmonic on x-axis
— ¥ - Continuous normalized poloidal flux on y-axis (radial variable)
— Resonant m=nq line
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Plasma response alters perturbed magnetic specirum

- Resonant response at rational surfaces (m=nq)

— Screening suppresses
— Tearing enhances

* Kink response amplifies non-resonant fields with m>nq
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Rotation scan
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Past experiments & simulations motivate rotation scan

- Rotation profile changes during
ELM suppression

— Lero-crossing of ExB and/or
electron rotation often aligns
with rational surface during
ELM suppression
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Past experiments & simulations motivate rotation scan

E x B rotation profiles

— Generally leads to increased

tearing drive = Suppressed
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Past experiments & simulations motivate rotation scan
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Past experiments & simulations motivate rotation scan

— Vacuum 6
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Effect of rotation zero-crossing can be tested with

systematic variation of model rotation profile

« DIII-D ITER-similar shape (ISS) equilibrium
— Experimental shape and kinetic profiles

* Model rotation profile with convenient parameterization, including
— Zero-crossing: ¥,
— Width of tanh: A Y (controls shear)

« Linear M3D-C1 used to assess effect of rotation on plasma response

190 Single-fluid rotation profiles - ¥, scan
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Effect of zero-crossing on
plasma response
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Low rotation increases resonant response

Resonant response as zero-crossing varied
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* Resonant field amplified when zero-crossing aligns with rational surface
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Low rotation increases resonant response

Resonant response as zero-crossing varied
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Resonant field amplified when zero-crossing aligns with rational surface
Resonant field peaks for | w | < 10 krad/s at rational surface
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Low rotation increases resonant response

Resonant response as zero-crossing varied
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Resonant field amplified when zero-crossing aligns with rational surface
Resonant field peaks for | w | < 10 krad/s at rational surface
Response almost always screened below vacuum level
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Low rotation increases resonant response

Resonant response as zero-crossing varied
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* Resonant field amplified when zero-crossing aligns with rational surface
* Resonant field peaks for | w | < 10 krad/s at rational surface
 Response almost always screened below vacuum level
* Resonant response exhibits fine structure

— U and IL response weighted to opposite sides of surface
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Low rotation increases resonant response

Resonant response as zero-crossing varied
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* Resonant field amplified when zero-crossing aligns with rational surface
 Resonant field peaks for | w | < 10 krad/s at rational surface
* Response almost always screened below vacuum level

* Resonant response exhibits fine structure
— U and IL response weighted to opposite sides of surface
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Low rotation increases resonant response

Resonant response as zero-crossing varied
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* Resonant field amplified when zero-crossing aligns with rational surface
* Resonant field peaks for | w | < 10 krad/s at rational surface
 Response almost always screened below vacuum level

* Resonant response exhibits fine structure

— U and IL response weighted to opposite sides of surface
— Multiple peaks clearly visible at g=8/2
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ZLero-crossing induces broad coupling of Fourier

components of perturbed magnetic field

Coupling occurs regardless of whether zero-crossing is on
resonant surface or in between
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Zero-crossing induces broad coupling of Fourier

components of perturbed magnetic field

Coupling occurs regardless of whether zero-crossing is on
resonant surface or in between
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Zero-crossing induces broad coupling of Fourier

components of perturbed magnetic field

Coupling occurs regardless of whether zero-crossing is on
resonant surface or in between

Y =0.933
q=8/2

OB,

OAK RIDGE INSTITUTE FOR
\ / SCIENCE AND EDUCATION 0:0 GENERAL ATOMICS
n'"Zd Managed by ORAU for DOE 25



Zero-crossing induces broad coupling of Fourier

components of perturbed magnetic field

Coupling occurs regardless of whether zero-crossing is on
resonant surface or in between

Near-resonant Fourier components are amplified
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Zero-crossing induces broad coupling of Fourier

components of perturbed magnetic field

- Coupling occurs regardless of whether zero-crossing is on
resonant surface or in between

- Near-resonant Fourier components are amplified
- Far-off-resonant Fourier components decrease
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ZLero-crossing induces broad coupling of Fourier

components of perturbed magnetic field

« Coupling occurs regardless of whether zero-crossing is on
resonant surface or in between

* Near-resonant Fourier components are amplified
* Far-off-resonant Fourier components decrease
« Appears as streak across m in SURFMN-like diagrams
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Coupling caused by current induced by mode driven

at zero-crossing

Fourier decomposition of
parallel current shows near-
resonant nature of mode

Significant rotation shear
required to drive mode
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Observability of plasma response
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Changes to plasma response observable by high-field
side magnetic probes

OB,: Even-parity plasma response
 Magnetic sensors can measure 5 [T

poloidal field at low-field side
(LFS) and high-field side (HFS)
midplane
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Changes to plasma response observable by high-field

side magnetic probes

Plasma perturbed magnetic

*  Magnetic sensors can measure field at pickup coils
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Changes to plasma response observable by high-field

side magnetic probes

Plasma perturbed magnetic

*  Magnetic sensors can measure field at pickup coils

poloidal field at low-field side | LFS, 1U 3 x HFS, IU
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midplane 5 : :
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— 20° - 45° phase shift
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Changes to plasma response observable by high-field

side magnetic probes

Plasma pertu;*bed magnetic
*  Magnetic sensors can measure 05 field at pickup coils
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Changes to plasma response observable by high-field

side magnetic probes

\V

Magnetic sensors can measure
poloidal field at low-field side
(LFS) and high-field side (HFS)
midplane
HFS signals show

— Up to 50% magnitude change
— 20° - 45° phase shift

« Locadlized around g=7/2
«  “Permanent” across g=8/2
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Changes to plasma response observable by high-field

side magnetic probes

Plasma perturbed magnetic

*  Magnetic sensors can measure field at pickup coils
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Divertor footprints are insensitive to these changes

~12520 ¥ =0.915

 Divertor footprint structure 4 954
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Quasilinear eleciromagnetic torque
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Quasilinear torque density from non-resonant response

acts to flatten rotation profile

» Negdtfive torque inside zero- 7 (0) = (R*Vp - (§J x 6B))
crossing decreases positive

rotation 7 from 1 kA IL
- Positive torque outside zero- 100 >
crossing increases negative *
rotation 2
- ELM-suppression hypothesis 099 .
— Reduced shear destabilizes . o &
turbulent modes g LA
— Increased transport arrests . — ::- IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII -2
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Quasilinear torque density from non-resonant response

drives zero-crossing toward rational surfaces

- Negative torque at ¥,
— Drives negative rotation

— Zero-crossing moves inward

) s Torque at the zero-crossing
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Quasilinear torque density from non-resonant response

drives zero-crossing toward rational surfaces

Negative torque at ¥V,
— Drives negative rotation

— ZLero-crossing moves inward :
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Quasilinear torque density from non-resonant response

drives zero-crossing toward rational surfaces

Negative torque at ¥V,
— Drives negative rotation

— ZLero-crossing moves inward :
9 Torque at the zero-crossing

- Positive torque at ¥, S E—
— Drives positive rotation 5 Stable Y, '
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Quasilinear torque density from non-resonant response

drives zero-crossing toward rational surfaces

Negative torque at ¥V,
— Drives negative rotation
— Zero-crossing moves inward

Positive torque at V¥,

— Dirives positive rotation

— Zero-crossing moves outward
“Stable points” exist in vicinity
of rational surface
ELM-suppression hypothesis

— Torqgue locks zero-crossing close
to rational surface

— Low rotation permits increased
resonant field

— Island penetration leads to
ELM-suppression bifurcation
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Summary

* Resonant and non-resonant plasma response sensitive to
rotation zero-crossing

- Changes to resonant response should be observable by HFS
magnetic sensors

*  Quasilinear torque from near-resonant mode may play an
important role in ELM-suppression
— Reduced shear causes increased turbulent fransport
— [Lero-crossing driven toward rational surface permits island
penetration
* Future work
— Further investigation of hypothesized ELM-suppression mechanisms
— Scan of edge rotation profile
— Detailed study of two-fluid effects, including rotation scan
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