

Modelling of VDEs with M3D-C1

D.Pfefferlé¹

S.Jardin¹ N.Ferraro¹ C.Myers¹ A.Bhattacharjee¹

¹PPPL, Princeton 08540 NJ, USA

APS-DPP 2016 San Jose, CA November 1, 2016

VDEs are inherent to diverted tokamak plasmas

- diverted plasma on a saddle due to external field (PF coils) ⇒ elongation, vertically unstable equilibrium
- conducting structures do not allow fast flux changes ⇒ passive stabilisation + feedback control
- loss of vertical control leads to deleterious contact with wall
 - transfer/induction of current from core \rightarrow halo \rightarrow wall \Rightarrow forces and stresses
 - scraping-off of $q_{edge} < 2 \Rightarrow 3D$ instabilities (kink), toroidal peaking of forces
 - thermal collapse, impurities \Rightarrow breaking of flux surfaces, runaway electrons

Damaging power of VDEs calls for realistic modelling

- forces during VDEs lead to structural damages of PFCs, can result in machine shutdown
 - worst case VDE is a design drive for ITER
 - need for avoidance (preemptive measures) and mitigation (damage control)
- abundant experimental data to be analysed and interpreted
 - provide theoretical/modelling support
 - help interpret measurements and optimise diagnostics for wall/halo currents

Basic/fundamental questions:

- 1. What are the key dynamics/regimes/phases of VDEs ?
 - rich literature, reduced models, linear theories, Halo/Hiro debate
 - self-consistently assembling the pieces of the puzzle is not trivial (stiffness)
- 2. Can we simulate/model VDEs accurately enough to feel confident about predictions for ITER ?
 - difficult: 2D + prescriptions OK, 3D not (yet) with realistic parameters
 - 3D: computationally far more expensive, profoundly richer physics than 2D

Phenomenology of VDEs serves as modelling targets

- drift phase [Pfefferlé, 2016] $t_D \sim (L_w/R_w)(I_p/I_d)(Z_d/Z_w)^2 \sim 30 {
 m ms}$
 - slow relaxation process
 - plasma mostly in force balance
 - advection (\approx rigid body), inductive coupling with wall \Rightarrow implicit scheme
- current quench $t_{CQ}\gtrsim L_p^*/R_p^*\sim 3ms$ [Wesley, 2006]
 - current transfer/induction from plasma to wall
 - flux scrape-off (advection-diffusion) + time-evolving resistivity via temperature
- normal wall currents $\Delta t_H \sim t_{CQ}$ [Myers, 2016]
 - shared/induced currents in resistive halo
 - early $n = 1 \sim n = 0$ components
 - counter-I_p rotation $\Omega R \sim 3 {\rm km/s} = 0.1 c_s$ for max 4 turns

M3D-C1 is a state-of-art FEM implicit code, suitable for modelling VDEs

Typical setup, parameters and recipe:

- 0.a 3 region anisotropic mesh for plasma, wall and vacuum
- 0.b Grad-Shafranov equilibrium reconstruction from experimental profiles (geqdsk) and coil currents
 - 1. 2D nonlinear implicit runs, tuned to match realistic timescales
 - Spitzer resistivity \times 30 \Rightarrow Lundquist $S \sim 10^8 10^9$
 - 2cm wall with resistivity $\eta_w = 1.9 imes 10^{-6} \Omega m$
 - thermal conductivity $\kappa_T = 10^{-6} \kappa_0$
 - halo region: $n_h = 10^{18} m^{-3}$, $p_h = 8$ Pa, $T_h = 25$ eV
 - effective temperature for halo resistivity $T_h = 9 \text{eV}$
 - 2. linear analysis launched at different times during 2D drift phase
 - monitor n > 0 modes, compare instantaneous growth rates with n = 0
 - 3. 3D nonlinear implicit runs started when plasma almost contacts wall
 - 48 toroidal planes
 - 4608 cores for 300'000 CPU hours
 - still in progress due to NERSC queues

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

with $\eta_W = 1.9 \times 10^{-6} \Omega m$, $T_h = 9 \mathrm{eV}$

NSTX-U

with $\eta_W = 1.9 \times 10^{-6} \Omega$ m, $T_h = 9 \mathrm{eV}$

NSTX-U

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

with $\eta_W = 1.9 \times 10^{-6} \Omega$ m, $T_h = 9 \mathrm{eV}$

NSTX-U

with $\eta_W = 1.9 \times 10^{-6} \Omega m$, $T_h = 9 \mathrm{eV}$

NSTX-U

🚺 NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

NSTX-U

D.Pfefferlé — VDE modelling — October 30, 2016

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

🚺 NSTX-U

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

6/13

6/13

6/13

6/13

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

NSTX-U

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

NSTX-U

with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

Comments about 2D nonlinear runs

- plasma current is slowly decaying (L_p/R_p) without loop voltage
- current density naturally peaks during slow drift phase $\Rightarrow q_0 < 1$
 - core stability, internal/external inductance (coupling with wall)
 - internal kink can precipitate thermal quench
- $T_h = 9 \text{eV}$ for halo resistivity reduces induced halo currents
 - no negative toroidal currents at separatrix
 - plasma current evolution $I_p(t)$ is rounder during quench
 - contact point is narrower \Rightarrow slower flux release
 - later appearance and shorter duration of normal wall currents
 - growth rates decrease with halo temperature (in particular n = 0)

Linear analysis informs on non-axisymmetric modes and when to initiate 3D run

- · core modes during drift phase
 - current density peaks causing drop of $q_0 < 1$
 - sawtooth instability could be used as a proxy for thermal quench
- n = 0 linear growth-rate from kinetic energy is higher than non-linear evolution of z_{axis}

poloidal rotation (sliding) + contraction
 D.Pfefferlé — VDE modelling — October 30, 2016

3D nonlinear runs launched as plasma contacts wall

Here showing case with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

- computationally expensive and sensitive to run
 - 300'000 CPU hours
 - alleviate numerical build-up of gradients via
 - time-step, viscosity, conductivity, resistivity
 - anisotropic mesh helps
- non-axisymmetric modes confined to edge
 - halo high temperature, i.e. low resistivity
 - stabilising surface currents
 - stable core to n > 0
 - q_e drops below $q_0 \sim 1$

3D nonlinear runs reveal stiff dynamics

Here showing case with $\eta_W = 5 \times 10^{-4} \Omega m$, $T_h = 24 eV$

- p.1 drifting plasma (in 3D)
- p.2 vertical motion stalls due to induced n = 0 wall currents
 - scrapping-off of LCFS but $q_e > 2$ stable
- p.3 edge surface currents develop as $q_e < 2$
 - stabilise external kink
- p.4 rapid growth of all modes
 - violent termination of plasma as $q_e < 1$
 - complete loss of temperature (flux-surfaces)
- p.5 current decay in residual cold plasma

Virtual diagnostic of 3D normal wall current to compare with shunt tile measurements

- amplitude quantitatively matches experimental shunt tile
- pattern rotation / zonal component
 - $n = 3 \rightarrow n = 1$, stretching \rightarrow shrinking of current tubes
 - globally zero momentum

¹C1WC: post-processing MPI parallelised FORTRAN code coupled to FIO

INSTX-U

Summary and conclusions

- M3D-C1 is employed to model NSTX VDEs with realistic parameters

 resistive wall capability with finite thickness
 - anisotropic mesh to resolve sharp gradients at plasma/wall contact point
 - implicit scheme to resolve advection-diffusion stiff problem
- faster 2D nonlinear runs are used to meet experimental timescales
- linear analysis to assess growth and structure of non-axisymmetric modes
- massive 3D nonlinear runs for evolution/saturation of non-axisymmetric wall currents
- virtual diagnostics of normal wall currents to compare with experimental data

Ongoing work and future plans

- Simulations, numerics
 - more 2D runs: fine-tuning of wall resistivity, halo temperature, heat conductivity, loop voltage,...
 - as many 3D runs as possible: convergence with toroidal planes, timing of 2D to 3D switching, smoothing/damping of numerical instabilities,...
- Analysis, interpretation and comparison with experimental data
 - sequence of events (z_{mag} , total currents, q-profile) + linear study
 - halo currents, wall forces, mode rotation, torque, TPF,...
 - virtual diagnostics for shunt tiles + magnetic probes
- Extensions and additional effects
 - CHI gap (enforce zero poloidal wall currents)
 - non-uniform / non-axisymmetric wall resistivity
 - toroidal rotation, torque, plasma/wall boundary conditions, sheath physics

Bibliography I

- D. Pfefferlé, PPPL (2016).
- X. Wesley, Journal (2006).
- C. Myers, PPPL (2016).

