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Steady-state beam current
• Ignoring time-derivatives, drifts (neoclassical 

effects), trapping, etc, one has the “classical” 
linearized (nb/ne << 1) equation to solve for          
fe1 = fe -fMe (Ohkawa, shielded current) :
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Only l=1 (Momentum) Harmonic
Needed for Current

• Harmonics uncouple classically (although not neo-
classically)

• Solve using a “Green’s Function” delta-fcn (in |vb| = 
vb), integrate at end of slowing down distribution:
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Beam Equation has “jump” Source
• Singular scattering kernel (|v-v’|-1) in Coulomb 

operator leads to jump in “source” s* at vb = ve :
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Discontinuity Occurs in Electron 
Bulk (for usual case vb << vTe)

• Smoothed by integration over beam 
velocity distribution and 2nd order energy 
scattering (e-e) of electrons

• However, need for greater accuracy 
(because of jump) than the usual Spitzer 
problem (no jump)
– Variational methods
– Higher-order (>2) moment methods: 

extendable to time-dependent calculations 
(CEL-Callen, et.al.)



Classical Variational Principle 
(CVP) Does NOT Work

• The CVP (Robinson and Bernstein, 1962) 
fails for this problem because of the 
complex |v|-dependence of the beam 
“source” kernel sb(x) [i.e., !~ const]

• Put another way, the stationary state of 
CVP is NOT the beam current, which is 
what we want!



Intro to the Adjoint Equation

• Recall that the Spitzer-Härm equation –
which is similar to the beam equation but 
with sb(x) ~ 1 - leads to a CVP for the 
electric-field driven current:

(CVP)   0
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The Adjoint (cont’d)
• Multiply SH equation by fe/fMe and using the 

self-adjointness of the linearized collision 
operator yields the adjoint expression for the 
beam current (also works for RF current 
drive, replacing Sb with QL operatior-Fisch):
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Advantage of Adjoint Method

• Compared with direct numerical solution, 
feS can be obtained (variationally) much 
more accurately than fe* using a few-term 
trial function approximation



Disadvantage of Adjoint Method

• Really anchored to “steady-state” 
calculations (beam slowing-down 
changing much slower than electron 
distribution function “adiabatic” response) 
and linearized (small beam density) limit. 

• Both of these might be excellent 
assumptions (for beam problem, but what 
about RF???). If not, then an extended 
moment approach might work better.



Why Higher-Order Moments?

• Moments methods have been used to 
accurately compute classical and 
neoclassical currents (SH, bootstrap, 
conductivity reduction) to high accuracy 
with few moments (2 or 3) – see Helander-
Sigmar.

• Reason: neoclassical “sources” have 
benign energy dependence 
– Sneo ~ 1, v2



NB Injection/RF Tails Violate 
“Benign” Velocity Dependence 

• NB Injection source “jump” in energy 
space not “smooth”

• Lower hybrid RF tails at v ~ nvTE, for n ~ 2-
3 or more, produce localized structures in 
velocity space that are not well 
represented by a few low-order Laguerre
polynomials (which form the basis set for 
low order moment methods)



Hi-Order Expansions

• Consider Grad’s tensor Hermite expansion 
projected along B and (for simplicity) the l=1 
spherical harmonic only: (-> Laguerre
polynomials of order 3/2):
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Lo-Order vs Hi-Order Moments

• Lo-Order moments (L0,L1) correspond to 
flow and heat flow along field lines (or 
friction/heat friction collisional forces)

• Hi-Order moments represent distortions of 
distribution function in |v| space



Require Hi-Order Coulomb Matrix 
Elements

• Projection of the kinetic equation onto the Ln
basis requires evaluation of “matrix elements” 
of C (“test” particle M and “field particle” N 
contributions):
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Nasty (really) 6-D v-space integrals

• To evaluate a few of these matrix 
elements is something grad-students are 
useful for…(if they survive, give them their 
degree)

• However, to evaluate hi-orders, it is very 
desirable to limit the calculations to as few 
as possible, and use recursion thereafter.



Two Schemes: Generating 
functions and Recursion

• Generating function for L’s allows a single 
evaluation of matrix elements for a two-
parameter set (Braginskii) and subsequent 
Taylor expansion yields the desired 
elements:
– Must use MACSYMA or MATLAB for very 

high orders (~20 is practical but takes a 
while…)



Recursive Method

• After a lot of algebra (Hirshman and 
Houlberg, Savannah Sherwood) one finds
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Recursive method (cont’d)

• The matrix elements mij, nij can be 
expressed in terms of Gauss’ 
hypergeometric function (1D integral) and 
satisfy recurrence relations which makes 
them easy to evaluate (in a 
computationally efficient manner).
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