
Princeton University

ORNL, Closures, March 2006

I. G. Kevrekidis, C. W. Gear and many other good people

Department of Chemical Engineering, PACM & Mathematics
Princeton University, Princeton, NJ 08544

Equation-free Computation
For Complex Systems

or
Enabling Microscopic Time-Steppers to perform

System Level Tasks
or

Solving Differential Equations 
Without the Equations

Or
Systems Engineering for Multiscale Simulations



Princeton University

Multiscale / Complex System Modeling

“Textbook” engineering modeling:
macroscopic behavior    through   macroscopic models
(e.g. conservation equations augmented by closures)

Alternative (and increasingly frequent) modeling situation:
• Models

– at a FINE / ATOMISTIC / STOCHASTIC level
–                         MD, KMC, BD, LB (also CPMD…)

• Desired Behavior
– At a COARSER, Macroscopic Level
–              E.g. Conservation equations, flow, reaction-diffusion, elasticity

• Seek a bridge
– Between Microscopic/Stochastic Simulation
– And “Traditional, Continuum” Numerical Analysis
– When closed macroscopic equations are not available in closed form
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What I will tell you:

Solve the equations WITHOUT writing them down.
Write “software wrappers” around “fine level” microscopic codes

Top level:       all algorithms we know and love  
Bottom level: MD, kMC, LB, BD, heterogeneous/ discrete media,

          CPMD, hybrid
INTERFACE:

Trade  Function Evaluation
for “on demand” experimentaton and estimation

“Equation Free” (motivated by “matrix free iterative linear algebra”)
Algorithms (coarse integration, patch dynamics, coarse RPM…)
Tasks (stability/ bifurcation, control, optimization, dynamic renormalization)
Examples (LB, KMC, BD, MD),   and some nebulous thoughts

Think of the microscopic simulator AS AN EXPERIMENT
That you can set up and run at will 
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Projective Integration - a sequence of outer integration steps
 based on inner simulator + estimation (stochastic inference)

Accuracy and stability of these methods – NEC/TR 2001
(w/ C. W.Gear,  SIAM J.Sci.Comp. 03, J.Comp.Phys. 03,
--and coarse projective integration (inner LB)
                                      Comp.Chem.Eng. 2002
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Projective methods in time:

-perform detailed simulation for short periods
             or use existing/legacy codes
- and then extrapolate forward over large steps
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Ε-Coli bacteria move in space by rotating their flagellae

Chemotaxis: A biased random walk problem

Gradient 

CCW rotation

run

Tumble

CW rotation

Flagellae

Berg HC Motile behavior of bacteria

PHYS TODAY 53 (1): 24-29 JAN 2000

10µm

1µm
Ε-Coli
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Physical Constants (no stimulus):
velocity: u~20-60 µm s-1

Mean run time ~1s
Mean tumble time~0.1s

Chemotactic signal
(attractant/repellant)

Signal
transduction

Response
(Che-Yp protein)
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The stochastic model: Markov-Monte Carlo

(Movie: http://www.rowland.org/bacteria/movies.html)

Draw URN ζ [0, 1] 

Compare ζ with probabilty of switching
 direction  of rotation:

p = 1-φ(+/-)

CW  CCW
  

φ(-)

φ(+)

Chemotaxis: A biased random walk problem

If CW and ζ>p, keep rotating CW;
Else, switch to CCW 

If CCW and ζ>p, keep rotating CCW;
Else, switch to CW 

If <3 CW, then TUMBLE. Else, RUN.
If previously running, direction unchanged.
Else, direction = +/- 1, with equal probability
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Descriptions

1. Detailed: vi for each variables

2. Moments

Zeroth moment: density ρ 

First moment: momentum  ρv 

Second moment

Third Momentm3

m2

m1

m0

………….

DISTRIBUTIONS & MOMENTS

v
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U: Potential
X: chemotactic
coefficient

(Keller and Segel, 1971)

p: density
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Chemotaxis: Coarse Projective Integration
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RESTRICTION - a many-one mapping from a high-dimensional
description (such as a collection of particles in Monte Carlo
simulations) to a low-dimensional description - such as a finite
element approximation to a distribution of the particles.

LIFTING - a one-many mapping from low- to high-dimensional
descriptions.

We do the step-by-step simulation in the high-dimensional
description.

We do the macroscopic tasks in the low-dimensional description.
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Attacting,  slow, invariant manifold
AIM/ AIF ---  Closure  ----  “Free energy surface”

Initialize p0 Natural dynamics
Constrained dynamics  (SHAKE)
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Chemotaxis: Coarse Projective Integration

Time (s) Time  (s)

           Coarse Projection

            Normal Evolution

(5 healing, m=10 acquisition and k=10 projection till time=6000
and then 5 healing, 10 acquisition and k=20 projection till time=20000)

Attractant profile

Direction
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… but everybody knows that simple explicit
methods can’t be stable for stiff problems ...
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The underlying(extremely simple) idea is to use the chord
connecting successive output points from the integrator
to approximate the derivative for use by another
integrator (or other analytical tools).

We will discuss:

1. What sort of stability can be expected in the integrator

2.  How it can be applied to a restriction of a microscopic
description

3.  How it might be applied to stochastic systems

4.  Some interesting extensions of the integrator
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Stability analysis – simple case:

Projective Forward Euler  (PFE)

Assume that one step of the supplied integrator (the inner integrator)
has an amplification of ρ(hλ)
-for Forward Euler this is 1+hλ
- for an “exact” integrator this is exp(hλ)

Amplification from t0 to tk+1+M is

                   σ = ρk[(M+1)ρ – M]
Region of absolute stability: Set of ρ such that |σ| ≤ 1.
Computed by finding boundary: ρ such that σ = eiθ

The region of absolute stability of takes one of two forms:

Usual linear analysis: for  y′ = λy
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k = 2,    M = 5, 7, and 9
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If M is large:
ρ-plane [= (1+hλ)-plane]

1
0

Such a small stability region - what’s the
point?
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“Coarse” Integration of Microscopically-defined systems

Microscopic systems usually do not have decaying fast components.  In
many cases we can find a slower system built on new variables that are
averages (moments) of the microscopic system.  In classical cases (e.g
Navier Stokes) the differential equation has been found.

We suppose that we have a microscopically-defined system, and we believe
that there is a PDE that describes the behavior of a lower-dimensional
description of the system - the restriction of the system.  We hope to be
able to integrate it without explicit knowledge of the PDE using the
techniques above.

We have at each time step tj:  a microscopic description Nj
                                                a macroscopic description nj

and mappings:    Restriction    MNi = ni    (this is like a projection)
                           Lifting            µni = Ni

                We expect  Mµ = I (the identity)
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We have created an “outer integrator” over a step size of h(k+q+M) using an
inner integrator Φ over step size h.

Why not use recursion? (really iteration)

Inner integrator: Φ0
Projective integrator based on Φi-1 is Φi
   Uses step size h(k+q+M)i

What is stability?  Consider Projective Forward Euler.  Let amplification of
level i integrator be σi and we have
                      σi+1 =  σi

k[(M + 1)σi - M]
Stability region is set of  σ in unit disk (same as bounded) in iteration
                     σ  ←  σk[(M + 1)σ - M]

Telescoping Projective Methods
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Projective Forward Euler Method - linear fit to last two points

One outer integrator step  - Φ1 
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Two-level Projection method (k = 2 at both levels)

y0                 y3+M                  y6+2M              y9+3M                                          

Φ2
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Telescoping Projective Methods:
What is stability?    Consider Projective Forward Euler.

Let amplification of level i integrator be σi   We have
                           σi+1 =  σi

k[(M + 1)σi - M]

Stability region is set of  σ that remain in unit disk (or, remain
bounded) in iteration

                                σ  ←  σk[(M + 1)σ - M]

This stability region will contain the stability region of the method with any
finite number of iterations.
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10 iterations of PFE with k = 2, M = 3
As # iterations → ∞ boundary becomes fractal

Note that M is small so that [0,1] (or [-1,0]) is inside the stability region
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In some ways, these are like high-stage number Runge Kutta
Methods which have been used to extend the region of
stability.

A more interesting application may be to problems with
multiple clusters of eigenvalues as shown on the next slide:
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Suppose all eigenvalues lie in a union of disjoint disks:
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A two-level PFE2-9 method
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THE CONCEPT:   What else can I do with an integration code ?

Have equation

Write Simulation 

)(xfx =&

( )x t

Do Newton on 0=!" )(xx

T
!

Do Newton

Compile 

x

)(x_

)( _x_ +

Also

__ ! D

x
)(k

x

)(xf

)( 1+k
x !+

)(k
x
)(k

x

)(xx !"

x

)( !+tx

Estimate

matrix-vector 
product

Matrix free
iterative linear algebra

The World

  CG, GMRES
   Newton-Krylov
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Recursive Projection Method (RPM) for    x-Φ(x)=0

• Recursively identifies subspace of
slow eigenmodes, P

Subspace P of few 
slow eigenmodes

Subspace 
Q =I-P

Reconstruct solution:
u = p+q = PN(p,q)+QF

Pi
ca

rd
ite

ra
tio

ns Newton
iterations

• Treats timestepping routine, as a
“black-box”

– Timestepper evaluates un+1= Φ(un)
Initial state un

Timestepping
Legacy Code

Convergence?

Final state uf

Φ(un)

YES

Picard 
iteration

NO

•     Substitutes pure Picard iteration  with
–Newton method in P
–Picard iteration in Q = I-P

• Reconstructs solution u from sum of
the projections  P and Q onto
subspace P and its orthogonal
complement Q, respectively
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RPM for “Coarse” Bifurcations
Bifurcation

Results

Coarse Bifurcation Code
RPM-based

Parameter

coarse IC PDE-based
Timestepper

Microscopic
Timestepper

…{Microscopic IC’s…

Local equilibrium assumption 
e.g Maxwellian distribution

}

Averaging in time
And/or space and or nr. 
of realizations and filtering

 LIFT µ RESTRICT M
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LB Simulations
g = 1.25e-4
Mo=4.1e-4
Eo =5.334

g = 5e-5
Mo=1.64 e-4
Eo= 2.133

128 x 128 LB lattice points
9 LB unknowns per point

BUT 4 “coarse” unknowns
(2 densities, x-,y-momentum)

Parallel LB integration 
Using 8 PentiumIII processors 

! "= )y,x(fi

states)y,x(uf ii! "=#

moments“Distribution functions” i
!

ρ(x,y) 1

3 24

6 7

5

8
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Coarse Behavior

Lattice-Boltzmann / BGK

NS

Happens in nature

Happens in computations

Lift
Restrict
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Bifurcation Diagram

Ta

Hopf point
(approx. Eo=5.12)

m=2 m=4 m=6
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Eigenspectrum Around Hopf Point
Eo=4.69 Eo=5.334

density                     x-momentum                y-momentum

λ=0.7934

λ=0.5107

Re(λ)
=0.7934

Im(λ)=0.77
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FT/NS LB-BGK
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Multiscale Modeling Challenges:

Tim
e

Space

V
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Proposal: detailed modeling in small spatial boxes with
interpolation between boxes - the “gap-tooth scheme”

How to improve the spatial
technology?
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Gap-Tooth Scheme

Space

Gap

Microscopic
description
in each tooth

Boundary conditions on teeth edges
via interpolation of coarse quantities from neighboring teeth

Ways to impose “coarsely inspired”  boundary conditions
   Motivated from Li & Yip, 1998:   Kevrekidis et al., nlin.CD/0302055 at arXiv.org

           Gear, Li and Kevrekidis, physics/0303010 at arXiv.org / PLA
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Multiscale Modeling Challenges:
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Can we combine gap tooth with projective integration in time?
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Multiscale Modeling Challenges:
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The “action” is going on at the intersection of the strips

Multiscale Modeling Challenges:

Tim
e
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The “action” is going on at the intersection of the strips
- these are “microscopic” elements and, by interpolation and
extrapolation, they are patched together over the full region
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 Viscous Burgers equation:
kMC Realization
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Randomly forced Burgers equation in 1-D – V.Yakhot
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• Velocity field u(x) is stochastic and consists of tiny shocks 
• The fields at different times “look” the same 

Why E(k)?
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• Velocity field u(x) is stochastic and consists of tiny shocks 
• The fields at different times “look” the same 
• Energy spectrum enables us to distinguish between the fields
• “Coarse Evolution” of E(k) appears deterministic

Why E(k)?
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Behavior of E(k)

mleft

mright

corner
fulcrum

kc kful

• Fast evolution for the large wavenumbers to
stationarity - THEN slow –and slower-
evolution for small wavenumbers

• Steady state for small wavenumbers:    
     E(k)=const

• Transient evolution in the small wavenumber
region can be described by two straight lines
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Projective integration
1. Run the simulation for short time and get the averaged stretching factor
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Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)
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Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)
3. Randomize the phases to generate new initial conditions
             S3(r) goes to zero
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Coarse Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)
3. Randomize the phases to generate new initial conditions
             S3(r) goes to zero
4. Continue the simulation with new ic’s
5. S3(r) gets enslaved to the steady state value in less than 100 time steps
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Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)
3. Randomize the phases to generate new initial conditions
             S3(r) goes to zero
4. Continue the simulation with new ic’s
5. S3(r) gets enslaved to the steady state value in less than 100 time steps
6. E(k) thus obtained evolves with the original simulation
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“Non self-similar” initial condition

• Projective integration designed for initial conditions in the “self-
similar” regime
• Other initial conditions renormalized using run and restrict algorithm
• Forward-tilted and backward-tilted initial conditions considered

forward tilted

backward tilted
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Renormalization algorithm

• A simplified initial condition

log(k)

lo
g 

E(
k)
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lo
g 

E(
k)

log(k)

• A simplified initial condition 
• Run for short time (5000 time steps) 

Renormalization algorithm
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lo
g 

E(
k)

log(k)

• A simplified initial condition
• Run for short time (5000 time steps) 
• Approximate the spectrum by straight lines

Renormalization algorithm
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• A simplified initial condition 
• Run for short time (5000 time steps) 
• Approximate the spectrum by straight lines
• Pull back the shape keeping the initial ordinate fixed 

Renormalization algorithm

log(k)

lo
g 

E(
k)

log(k0)

same shape
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• Sequence of iterations leading to the right shape
• Comparison with a representative spectrum

Forward tilted i.c.
• convergence in 6-8 iterations

Renormalization algorithm
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• Sequence of iterations leading to the right shape  (cf. NLS work, LPMSS)
• Comparison with a representative spectrum 

Forward tilted i.c.
• convergence in 6-8 iterations

Backward tilted i.c.
• convergence in 1 iteration

initial 
condition

corrected i.c.

Renormalization algorithm
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Coming full circle
No equations ?

Isn’t that a little medieval ?  Equations = “Understanding”

AGAIN   matrix free iterative linear algebra

A x = b

PRECONDITIONING,     B A x = B b

B  approximate inverse of A

Use “the best equation you have”

to precondition equation-free computations.

With enough initialization authority:

equation free laboratory experiments
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Computer-Aided Analysis
of Nonlinear Problems in Transport Phenomena

Robert A. Brown, L. E. Scriven and William J. Silliman

in HOLMES, P.J.,  New Approaches to Nonlinear Problems in Dynamics, 1980

  ABSTRACT    The nonlinear partial differential equations of mass, momentum, energy, 
Species and charge transport….  can be solved in terms of functions of limited differentiability,
no more than the physics warrants, rather than the analytic functions of classical analysis…
…..  basis sets consisting of low-order polynomials.   ….   systematically generating and
analyzing solutions by fast computers employing modern matrix techniques.

….. nonlinear algebraic equations by the Newton-Raphson method.  … The Newton-Raphson
technique is greatly preferred because the Jacobian of the solution is a treasure trove, not only
for continuation, but also for analysing stability of solutions, for detecting bifurcations of
solution families, and for computing asymptotic estimates of the effects, on any solution, of
small changes in parameters, boundary conditions, and boundary shape……

In what we do, not only the analysis, but the equations themselves  are obtained on the
computer, from short experiments with an alternative, microscopic description.
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“Swiss Roll” Dataset

Data from:
http://isomap.stanford.edu/datasets.html

3D data sampled
 from 2D manifold
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Euclidean Distance
Geodesic Distance

Selected Datapoint

X
Y

Z

3D Dataset with 2D manifold

Euclidean distance in input space
may be weak indicator of INTRINSIC 

similarity of datapoints

Geodesic distance is good for this dataset

Euclidean distance reliably describes local
 neighborhood structure for similar datapoints

COMBINE LOCAL DISTANCE INFORMATION 
TO INFER GLOBAL DATASET STRUCTURE
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Diffusion Map (Φ2, Φ3)

Same LOWER dimensional representation found for different “roll” rotations 

B. Nadler, S. Lafon, R.R. Coifman, & I.G. Kevrekidis, Appl Comp Harm Anal 2005
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Parametrizing nonlinear manifolds
Given: (noisy) data in space, unordered, in high
dimension. Need: discover meaningful parameters.
Euclidean distances between any two points usually
not meaningful.
Euclidean distances between very close points is
meaningful. Use local Euclidean distances and glue
them to find paths between any two points.
Diffusion distance: Compute ALL paths between A
and B and take a weighted average (long paths count
less, but there are more of them). This is stable
under noise and behaves well with bottlenecks. It is
a diffusion process.

-0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

A 

B

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

A

B

geod.dist(A,B)≈geod.dist(B,C), diff.dist(A,B)>>diff.dist(B,C)

Slowly communicating states:
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Y

X

datapoint
points A, B, C

Data set consisting of
points on two disks

 connected by small strip

Diffusion Distance

D(A,B)
Diffusion distance

 between
states A and B

D(A,B) >> D(B,C)

Much fewer paths through the data between A and B than between B and C 

The shortest path between points A and B is roughly the same as between B and C.
 The diffusion distance however is much larger between A and B

since diffusion occurs through a bottleneck.

Markov matrix defining diffusion given by kernel
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Graphs, Laplacian Eigefunctions, Embeddings, Heat Parametrization
We want to compute diffusion distances, and then deduce parametrization from those.
Data Vertices of graph
Local distances Conductivity of edges
Want to solve an heat/electrical network
equation: look at Laplacian on graph,
compute eigenfunctions

The eigenfunctions (long time behaviour) can be
used to compute diffusion distances:

and to parametrize, mapping the set into R

1.2 1.4 1.6 1.8 2 2.2 2.4

-1.6

-1.4

-1.2

-1

-0.8

-0.6

0

1

2

x 10
-4

A 

B

Color proportional to diffusion distance,
related to how much heat flows between A
and B in a certain time

Slowly communicating states are mapped by the
eigefunctions into far away points.

A B

C
**  Belkin & Nyogi, Lafon, Coifman, Maggioni
Computations:
 - Order n, nlog(n) via eigenfunctions
- Order nlog(n) via diffusion wavelets (full
multiscale organization)
All depend on decay of eigenvalues, i.e. whether
there is separation of time scales

n



Princeton University

Alanine Dipeptide
In 700 tip3p waters 

 w/ Gerhard Hummer, NIDDK / J.Chem.Phys. 03

The waters
   The dipeptide
     and the Ramachandran plot
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Application to Alanine Dipeptide data
12-atom dipeptide fragment in water.
Coordinates of the atoms in the molecule
and of the closest water molecule.

0 2 4 6 8 10 12 14 16 18 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Eigenvalues of Laplacian

Chemists parametrize with two angles which are
dynamically significant. We would like to LEARN these
good parameters just by looking at the high-dimensional
clouod of points resulting from the simulation.

Big gap

Analysis of data (with no prior knowledge about the
problem) reveals:
- configuration space is one dimensional,
- one parameter (arc length on states) is enough,
- the two commonly used angles are rather good
parameters
- we find two good parameters, in part related to the
angles, that do parametrize

Color represents values of the chemist's angles on the set of states of the molecule, our parameters
give the axes (2 are enough), as well as the natural “arc-length” parametrization.
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SIAM– July, 2004

Clustering and stirring in a plankton model

Young, Roberts and Stuhne,  Nature  2001
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Dynamics of System with convection
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Simulation Method

• Random (equal) birth and death, probability: λ = µ.
• Brownian motion.
• Advective stirring. (ϕ, θ are random phases)

• IC: 20000 particles randomly placed in 1*1 box
• Analytical Equation for G(r):
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Stirring by a random field (color = y)
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Projective Integration: From t=2,3,4,5 to 10
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Micro-scale Meso-scale Macroscale

Unique Unique

Multiple Multiple

Microscopic/
stochastic
models

Fokker-Planck Moment

Closures

Brownian
Dynamics

Monte Carlo

Spherical
Harmonics

Wavelets

PDE’s

Coarse Brownian Dynamics for Nematic Liquid Crystals:
Bifurcation, Control, Coarse Projective Integration
   Costas Siettos, Mike Graham, IGK,  arXiv.org 02, J.Chem.Phys. 03
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Fokker-Planck of the orientation probability density

The orientation distribution function ψ(t,u) gives the probability density that a  rod is oriented
along u at time t.

The scalar order parameter S represents a scalar measure of the degree of order of the sample,
nondimensional potential intensity U.

u

(M. Doi, J. Polym. Sci., Polym. Phys., 1981).

Representation of the orientation
 in space: 
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R. G. Larson and H.C. Öttinger, Macromolecules, 24, 6270 (1991).
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The evolution of the distribution function is described by the following
Stochastic integro-differential equation:

, dw: Wiener process
with covariance IΔt

u  unit vector representing the rigid rod orientation

k Boltzmann constant

T absolute temperature

D is the rotational diffusivity

V is a nematic potential, a functional of the
distribution function

Explict Euler method to time-integrate
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Brownian dynamics: Evolution of the orientation distribution
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The microscopic model: Brownian dynamics

The microscopic model is considered as a “black-box” coarse
timestepper

Brownian
Timestepper

S(t) S(t+T)
Macro-I.C.’s

NEWTON

U (Potential)

Lifting RestrictionS degree of order
in orientation
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0.0001      0.1      0.3  
 

 
 
0.5                0.75                   1.0  

 

EVOLUTION OF DISTRIBUTION IN TIME
(for 10^3 particles, U=5., dt=0.005,uuzzdes0=0.8)
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0.0001 0.1 0.3

0.5 0.75 1.0

EVOLUTION OF CUMULATIVE DISTRIBUTION IN TIME
(for 10^3 particles, U=5., dt=0.005,uuzzdes0=0.8)
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(a)

(a) Evolution of the distribution function of u (histogram) in the z – direction. The values in the z- direction were
partitioned in 100 bins.

(b)  Evolution of the corresponding cumulative distribution function of u in the z – direction. The simulations were
performed at U= 5.5, Ntraj=103, dt=0.001

SLAVING OF THE HIGHER MOMENTS TO THE SLOWER ONES
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Coarse Bifurcation Diagram

•3x105 molecules,

Arc-length Continuation wrapped around
the coarse timestepper; timestep: T=1.7)

ΒΗΜΑΤΙΣΜΟΣ

Brownian
Προσοµοιωτής

S(t) S(t+T)

Brownian
Timestepper

S(t) S(t+T)

NEWTON-
RAPHSON

ΒΗΜΑΤΙΣΜΟΣ
ΣΕ ΠΑΡΑΜΕΤΡΟ

NEWTON
-

Arc-length U

Lift Restriction
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3 3.5 4 4.5 5 5.5 6

U

_

-0.5
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Eigenvalues
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IS ONE COARSE VARIABLE SUFFICIENT ?  2-moment lifting
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std
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λ1=0.001

λ2=0.18 U=4.75

Brownian
Προσοµοιωτής

S(t) S(t+T)

Brownian
Timestepper

S(t) S(t+T)

NEWTON-
RAPHSON

ΒΗΜΑΤΙΣΜΟΣ
ΣΕ ΠΑΡΑΜΕΤΡΟ

NEWTON
-

Arc-length U

Lift Restriction

Adaptive computation:
    use smaller time steps, estimate error
    use more mesh points, estimate error
    HERE:  use more lifting variables
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Slaving of higher moments to lower ones

std  is slaved very fast to S

One-dimensional slow manifold

Description with just one moment
(the coarse variable S)
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uuzzdes
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COARSE PROJECTIVE INTEGRATION
(TimeHorizon =1.0 time units, Ntraj=10^5, dt=0.0005)
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•Compile
)(!x )( !+tx

T
!

•Fixed point: 0=!" )(xx

BROWNIAN DYNAMICSBROWNIAN DYNAMICS
TIMESTEPPERTIMESTEPPER

Perform “coarse” system identification

DO “COARSE” CONTROL 

Separation principle

DESIGN DISCRETE COARSE OBSERVERS

DESIGN DISCRETE COARSE CONTROLLERS

  

  Action of Slow Jacobian

   Coarse  Control
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Stabilization of an open-loop unstable coarse steady
state (for U0=4.7)

The Control Problem

-0.5

0

0.5

1

4 4.5 5 5.5 6

U

S

time (s)Time  (s)

Control Variable
 (bifurcation parameter)

Controlled variable
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Lattice-gas model of the CO oxidation reaction on a
square lattice taking into account the lateral  CO-CO interactions:

1)   COgas + (*)i  !  COads,i   - CO adsorption 

2)   O2,gas + (*)i + (*)j !  Oads,i  +  Oads,j  - O2 adsorption 

3)   COads,i  !  COgas + (*)i    - COads desorption 

4)   COads,i + Oads,j !  (*)i + (*)j + CO2,gas - CO2 formation 

5)   COads,i + (*)j  !   (*)i   +  COads,j  - COads migration 

        6)   Oads,i + (*)j  !   (*)i   +  Oads,j   - Oads migration 

The “exact” time evolution of the reaction system is described 
by the chemical master equation: 

d P! / dt   =   
"

# (W#$! P#   –  W!$# P!), 

where P! (P#) is the probability of finding the system in configuration ! (#). W!$# 
are transition probabilities per unit time for various reactions on a lattice. In 
general, the master equation cannot be solved exactly, therefore, one has to use 
some uncontrolled approximations in order to derive the macroscopic evolution 
equations, or to apply the kinetic Monte Carlo (KMC) simulations which can 
provide, at least in principle, the exact solution of the problem. 

Routine closures:   Mean-field approximation  

     For the zeroth moments (concentrations) on the lattice 

d!CO/dt = "!#  –  $!COS1 – 4kr
!

CO
!

OS2          

d!O/dt  =  4%!#
2
  –  4kr

!
CO
!

OS2  

 
where 
 

!# = 1 – !CO – !O; 

S1 = exp(4!CO
&

CO-CO/(RT));  S2 = exp(3!CO
&

CO-CO/(RT)); 

&
CO-CO  – the energetic parameter of lateral interactions; 

T – temperature, R – gas constant;  ", $,  kr – rate constants. 
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MC   -  our Monte Carlo + Time-stepper algorithm

QCA -  quasi-chemical approximation

MFA

Weak interactions (!
CO-CO

 = 1.5 kcal/mol)

MC

QCA

MFA -  mean-field approximation
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Random 
distribution

“Equilibrated” 
distribution

Final  
distribution

coarse initial
conditions

KMC

Coarse Timestepper
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Due to repulsive CO-CO interactions, a second order phase transition

occurs at  !
CO

 > 0.25 ML.   As a result, an ordered overlayer is formed

on surface. 

MC   -  our Monte Carlo + Time-stepper algorithm

           (500*500 lattice, N
run

 = 400)

QCA -  quasi-chemical approximation

MFA -  mean-field approximation

Strong interactions ("
CO-CO

 = 2.0 kcal/mol)
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QCA

MFA
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•Compile
)(!x )( !+tx

T
!

•Fixed point: 0=!" )(xx

BROWNIAN DYNAMICSBROWNIAN DYNAMICS
TIMESTEPPERTIMESTEPPER

Perform “coarse” system identification

DO “COARSE” CONTROL 

Separation principle

DESIGN DISCRETE COARSE OBSERVERS

DESIGN DISCRETE COARSE CONTROLLERS

  

  Action of Slow Jacobian

   Coarse  Control
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COARSE CONTROL ON  A MONTE-CARLO MODEL: Simulation Results

θ’Α
µ
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Open-loop Closed-loop

Control objective: Stabilizing the macroscopic (expected) unstable steady state at  20.7

This coarse steady state (as well the coarse Jacobian and control matrix)  was
estimated through the coarse timestepper)

Linear Control Design: Pole Placement and 1 step ahead state prediction using Kalman filter

±

OPEN LOOP CLOSED LOOP

λ1 = 0.87135 λ1 = 0.87135
λ 2,3 = 1.00130   0.00529i λ2 = 0.98 and λ3 = 0.99

EIGENVALUES
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Recursive Projection Method (RPM)

• Recursively identifies subspace of
slow eigenmodes, P

Subspace P of few 
slow eigenmodes

Subspace 
Q =I-P

Reconstruct solution:
u = p+q = PN(p,q)+QF

Pi
ca

rd
ite

ra
tio

ns Newton
iterations

• Treats timstepping routine, as a
“black-box”

– Timestepper evaluates un+1= F(un)
Initial state un

Timestepping
Legacy Code

Convergence?

Final state uf

F(un)

YES

Picard 
iteration

NO

•     Substitutes pure Picard iteration  with
–Newton method in P
–Picard iteration in Q = I-P

• Reconstructs solution u from sum of
the projectors P and Q onto
subspace P and its orthogonal
complement Q, respectively:
–u = PN(p,q) + QF

F.P.I.
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•Isothermal operation
•Modeling Equations (Nilchan & Pantelides)

Step 1 :
Pressurisation

Step 2:
Depressurisation

Rapid Pressure Swing Adsorption
1-Bed 2-Step Periodic Adsorption Process

t=0 to T/2

Ci(z=0)=PfYf/(RTf)

P(z=0)=Pf

z=0

z=L

t= T/2 to T

P(z=0)=Pw
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Rapid Pressure Swing Adsorption
1-Bed 2-Step Periodic Adsorption Process

Production of oxygen enriched air

Zeolite 5A adsorbent (300µm)

Bed 1m long, 5cm diameter

Short cycle

–1.5s pressurisation, 1.5s depressurisation

– T= 3s

Low feed pressure (Pf = 3 bar)

Periodic steady-state operation

–reached after several thousand cycles

q  ,c (t=0) q , c (t=T/2)

q , c (t=T)

Must obtain:
q , c (t=T) = q , c (t=0)
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Typical RPSA simulation results

(Nilchan and Pantelides, Adsorption, 4, 113-147, 1998)
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RPSA simulation results
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PRM-gPROMS Spatial Profiles (t=T)
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