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Selective Review of Related Work

• Implicit treatment of fast compressive wave

– Original idea proposed by Harned & Kerner (JCP 1985)

–  Basic idea: Subtract a term which mimics the fast wave behavior from
both sides of the v  equation; treat one side explicitly and the other
implicitly

– First order in time

• Implicit treatment of Alfvén wave

– Harned & Schnack (JCP 1986)

– Similar to the fast compressive treatment with extra heuristics (e.g. set
cross terms of the operator to zero)

– First order in time

• Newton-Krylov Approaches

– Chacon et. al : “Parabolization + Schur complement + Multigrid”

• Works for resistive and two-fluid MHD

– Reynolds et. al: SUNDIALS (cvode, KINSOL)

• Preconditioner: Operator + Directional splitting, Local wave-structure
decomposition
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Nonlinearly Implicit : Introduction to Newton-

Krylov
• The solution at the next time level to the entire system of equations is

expressed as the solution to the following nonlinear equation

The number of unknowns is 8N2 for an NxN mesh

• This is solved using Newton’s method

The size of the Jacobian matrix is 64N4

• The linear system at each Newton iteration is solved with a Krylov method in
which an approximation to the linear system J U = -F is obtained by
iteratively building a Krylov subspace of dimension m
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Nonlinearly Implicit : Introduction to Newton-

Krylov
• Commonly used Krylov methods which can handle asymmetric matrices

– GMRES (Generalized Minimum Residual)

• Long-recurrence Arnoldi orthogonalization method

• Robust, guaranteed convergence, but heavy on memory requirement

– BiCGStab (Bi-conjugate Gradient Stabilized)

• Short-recurrence Lanzcos biorthogonalization procedure

• Residual not guaranteed to decrease monotonically, but less memory requirement

• Steps in a Newton-Krylov method
1. Guess the solution Un+1,0 (=Un)

2. For each Newton iteration k
1. Using a Krylov Method solve for  Uk

Solve J  Uk = - F(Un+1,k)until || J  Uk + F(Un+1,k || < Itol

3. Update the Newton iterate: Un+1,k+1=Un+1,k +   Uk

4. Check for convergence ||F(Un+1,k+1|| < ftol

• Newton method converges quadratically. In practice, we use “Inexact” Newton which
can exhibit linear or superlinear convergence

• Jacobian-Free Newton-Krylov: Krylov methods require only matrix-vector products
to build up the Krylov subspace, i.e., only J U is required. Thus, the entire method
can be built from evaluations of the nonlinear function F(U)
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JFNK: Resistive MHD

• Reynolds et al. (JCP 2006) developed a fully implicit MHD method for the
fully conservative form of the resistive MHD equations.  The nonlinear
function was expressed as a a high-order BDF method

In this method, n,i and n,i are fixed parameters for a given method order qn.
The method is stable for any  tn for qn={1,2}

• The divergence of fluxes is discretized as

• The numerical fluxes are computed as

The coefficients a  are chosen based on the order of the method. For 4-th
order finite difference method: m=1, n=2, a-1=a2=1/12, a0=a1=7/12

• Resulting code was conservative, and preserved the solenoidal
property of B
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Main Idea of Hyperbolic Preconditioner

• Ideal MHD is a hyperbolic system of PDEs

• Linearization about previous time step (or Newton iterate)

• Decomposition of systems of coupled PDEs to decoupled systems of
equations governing linear wave propagation

– Local decomposition into characteristics

– Riemann invariants propagate along characteristics

– Claim: If the fastest waves in the system are parasitical but dynamically
insignificant then solving for the fastest wave may be an effective preconditioning
method

– Solve for the fastest waves; and reconstruct the solution from the Riemann
invariants wherein only the Riemann invariants associated with the fastest waves
are updated
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JFNK: Resistive MHD - Preconditioner

• Instead of solving J  U = -g solve (J P-1) (P  U) = -g, i.e., right
preconditioning is employed

• The preconditioner is split into a hyperbolic and a diffusive component

• Denoting by (.) the location of the linear operator action, the ideal MHD
Jacobian is

where Jx is the Jacboian of the hyperbolic flux in the x-direction. Lx is the
spatially local left eigenvector matrix for Jx. Jy, Ly, Jz, and Lz are similarly
defined



8

JFNK: Resistive MHD - Preconditioner

• Directional splitting is employed to further approximate the preconditioner

• Decoupling into 1D wave equations along characteristics

• Only the fastest stiffness inducing waves need to be solved. Furthermore,
accuracy may be sacrificed because this is done in the context of the
preconditioner.

• Thus along each direction, we get a system of linear wave equations. For
each wave family, we now get a  sequence of tridiagonal linear systems
which can be efficiently solved. In parallel we use the method proposed by
Arbenz & Gander (1994)
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JFNK: Resistive MHD - Preconditioner

• For spatially varying J(U) a correction solve is involved

• Since this has no spatial couplings, the resulting local block systems
may be solved easily by precomputing the 8x8 block matrices Pcorr at
each location coupled with a LU factorization
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JFNK: Resistive MHD - Preconditioner

• Diffusion Preconditioner Pd: This solves the subsystem

• To solve Pd y = b for y = [ y , y  v, yB, ye]
T

Steps 2,3 and 5 are solved using a geometric multigrid approach. Step 4
may be approximated with finite differences instead of constructing and
multiplying by individual submatrices
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Verification Test: Linear Wave Propagation

• Ideal MHD test: Linear waves propagated to t=50

• Slow wave propagating obliquely to the mesh
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Summary

• Verification tests of implicit (w/o preconditioning)

• Linear wave propagation

• GEM reconnection

• Pellet model problem

• In all tests, the implicit code agreed with the explicit one

• Preconditioners are developed recognizing that ideal MHD is a hyperbolic
system

• Operator + Directional splitting

• Along each direction, the local wave structure was exploited to solve for the
fastest waves

• Diffusion part of the equations preconditioned using multi-grid

• For the chosen tests (wave propagation, KH) our preconditioned JFNK
approach works well as the problem size gets larger and the time step is
~(10-100) larger than the explicit CFL constrained time step

• Future Work: Under the auspices of SciDAC-2, we will combine block-
structured hierarchical adaptive mesh refinement (w/ Chombo) technique
with fully implicit time stepping (JFNK)
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Introduction to Newton-Krylov: Preconditoners

• Krylov methods can lead to slow convergence. This is especially true for MHD where
the Jacobian is ill-conditioned. Preconditioners help alleviate the problem of slow
convergence and are formulated as follows

• The basic idea of preconditioners is that the matrix JP-1 or P-1J is close to the identity
matrix, i.e., P is a good approximation of J. Furthermore, to make preconditioning
effective, P-1 should be computationally inexpensive to evaluate

• Two broad classes of preconditioners

1. Algebraic: These are of the “black-box” type. Obtained from relatively inexpensive
techniques such as incomplete LU, multi-grid etc. These require storage for the
preconditioner.

2. Physics-based: These may be derived from semi-implicit methods, and pay close attention
to the underlying physics in the problem. Furthermore, these can still operate in the “Jacobian-
Free” mode.


