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Issue To Be Addressed:

Is RMP-flutter-induced1 pedestal plasma transport important?2

Theses:

• At pedestal top2 RMPs reduce |~∇Te| more than |~∇ne|, with
changes ∝ I2

coil; they also change plasma toroidal rotation Ωt.

• Flow-screening averts stochasticity-induced3 but not flutter1 xport.

• RMP-flutter-induced transport1 might cause observed transport.2

•Model implications are different at low4 & high5 collisionality.

1J.D. Callen, “Drift-Wave Turbulence Effects on Magnetic Structure and Plasma Transport in Tokamaks,” Phys. Rev. Lett. 39, 1540 (1977).
2J.D. Callen, A.J. Cole, C.C. Hegna, S. Mordijck, R.A. Moyer, “RMP effects on pedestal structure and ELMs,” UW-CPTC 11-13R (to be pub. in NF).
3A.B. Rechester and M.N. Rosenbluth, “Electron heat transport in a tokamak with destroyed magnetic surfaces,” Phys. Rev. Lett. 40, 38 (1978).
4T.E. Evans et al., “RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities,” Nucl. Fusion 48, 024002 (2008).
5W. Suttrop et al., “Studies of edge localized mode mitigation with new active in-vessel saddle coils in ASDEX Upgrade,” PPCF 53, 124014 (2011).
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RMPs Reduce Pressure Gradient At Pedestal Top

• RMP-induced
reductions in
|~∇P | are:

small in core,

largest at the

pedestal top, and

small (increase!?)

at the edge.

• Key transport
issue for ELM
suppression is:

How do RMPs

reduce |~∇P | at

the pedestal top?
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Figure 1: Edge pressure profile without/with RMP ELM

suppression. Courtesy of O. Schmitz, R. Nazikian, 2011.
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RMPs Increase Te, ne Gradient Lengths At Pedestal Top

• Te, ne gradient length ratios with RMPs to wo (sym) ∝ χe, D:

[LTe]RMP

[LTe]sym

'
χRMP
e + χsym

e

χsym
e

; plus a similar formula for Ln, DRMP.

• Apparently
RMPs increase:

χe by <∼ × 6,

D by <∼ × 2.

• Changes peak at
pedestal top:

0.93 <∼ ΨN
<∼ 0.97,

near 11/3 surface.
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Figure 2: Ratio of Te and ne gradient scale lengths with

RMPs to without (sym) versus radius.2
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Peak Of RMP-induced Extra Transport ∝ I2
coil

• Peak Te, ne gradient length ratios scale approximately with I2
coil.

• Peak LTe ratio increases ∼ 3× more than peak Ln ratio does,
which indicates DRMP/χRMP

e ∼ 1/3.
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Figure 3: Peak ratios of LTe and Ln with to wo RMPs vs. square of I-coil current.2
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Toroidal Rotation Of Carbon Increases With Icoil

•When ELMs are suppressed with Icoil > 4.0 kA in DIII-D ISS
discharges,4 carbon toroidal rotation at pedestal top “jumps up”
to a toroidal rotation frequency of Ωt ' Vtor/R ∼ 104 s−1.

• Increases in Vtor in-
duced by RMPs

do not systematically

increase with Icoil,

but are always large

when ELMs are sup-

pressed (Icoil ≥ 4.7).

• Changes are largest
at the pedestal top:

near ΨN ∼ 0.96.
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Figure 4: Carbon toroidal rotation in edge as function

of Icoil. Fig. 4.19b in S. Mordijck thesis, UCSD 2011.
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Expt. Summary:2 There Are Some Key RMP-induced

Plasma Transport Effects That Need To Be Explained

• RMPs increase gradient scale lengths and electron diffusivities:

LTe, Ln ∼ I2
coil implies χRMP

e , DRMP ∼ I2
coil (χRMP

e ∼ 4 m2/s at Icoil = 5.2 kA),

LTe/Ln ∼ 1/3 implies DRMP ∼ χRMP
e /3,

both are larger than values without RMPs (χsym
e ∼ 0.6 m2/s), and

their increases are localized to pedestal top region (0.93 <∼ ΨN
<∼ 0.97).

• In DIII-D low collisionality ISS discharges4 plasma toroidal rota-
tion Ωt increases at pedestal top when there is ELM suppression.

• RMP effects apparently depend on collisionality:

low4 (DIII-D) — ELMs are suppressed in narrow q95 “resonance windows,”

high5 (ASDEX-U) — ELMs mitigated at high density, no resonance effects.
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Transport Effects Of RMPs: Flutter Or Stochasticity?

• RMP-induced radial (ρ) magnetic perturbations δBρ :

mostly just non-resonantly spatially “flutter” the field lines, flux surfaces,

but can induce stochasticity if islands are created and overlap (Chirikov).

• Transport can be induced by magnetic flutter and stochasticity:

flutter causes1 χδBe ∼ vTe λe (δBρ/B0)
2 via finite collisional (∼ Braginskii)

parallel electron heat conduction, which along with perpendicular electron

heat transport and multiple RMP fields produces the needed irreversibility,

stochasticity causes (RR3) χδBst
e ∼ vTeL‖c(δBst/B0)

2 via ‖ motion along ~Bst.

• But flow screening of RMP fields inhibits reconnection, island
formation & overlap, and hence stochasticity—next 2 viewgraphs.

• Nonetheless, δBρ 6=0 off rational surfaces induces flutter xport.1
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Flow Screening Reduces δBρ At Rational Surfaces,

But RMPs Induce Many δBρm/n 6= 0 At Pedestal Top

• Resonant δBρ 10/3 “screened” (∼×30) at 10/3 surface =⇒ no island.

• But, other δBρm/n/B0 ∼ 3.3× 10−4 MPs are nonzero there.
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Figure 5: Ideal/resistive MHD RMP-induced radial δBρm/n profiles: flow-screened

(left), ∼ vacuum (right). Fig. 3 in M.S. Chu et al., Nucl. Fus. 51, 073036 (2011).
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Two-fluid Modeling6 Yields Less Flow-Screening

•M3D-C1 visco-resistive 2-fluid modeling6 is more realistic. In
Fig. 6 solid lines are with flow and the dashed lines are in vacuum.
6N.M. Ferraro, “Calculations of two-fluid linear response to non-axisymmetric fields in tokamaks,” 2011 APS-DPP invited paper JI2.02, sub. to PoP.

• Features of say 11/3
(purple) RMP field in
rotating 126440 plasma:

it is screened by ∼×5

near 11/3 surface,

its amplitude grows

linearly away from min,

it extends over many

m/n rational surfaces.

• 8/3, 9/3 RMP fields
are not flow screened
since ~Ve⊥'0 at Ψ'0.86.

8/3 9/3 10/3 11/3 12/3

Figure 6: Spatial variation of δBρm/3 (G/kA) for

126440. Courtesy of N. Ferraro, March 2012.
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A Model Field Can Be Used For Flow-Screened δBρ

• Some key characteristics of flow-screened RMP m/n fields are:

on rational surfaces their magnitudes are reduced from their vacuum values,

they increase linearly with distance |x| = |ρ− ρm/n| off rational surfaces,

ideal MHD responses outside dissipative layer (δµη ∼ 0.5 cm) grow linearly

until they reach vacuum values at cylindrical analytic estimate of |x| ∼ 1/kθ.

• Define a flow screening factor as the ratio of vacuum δBρm/n to its
flow-screened value on the rational flux surface q(ρm/n) ≡ m/n:

fscr ≡
[
δBvac

ρm/n

δBplasma
ρm/n

]
ρm/n

flow screening factor2 in the plasma (≥ 1),

∞ (ideal MHD), ∼ 30 (res. MHD), ∼ 4 (2-fluid6).

• Cyl. model of flow-screened m/n RMP in plasma is2 (|x| < 1/kθ)

δBplasma
ρm/n (x)

δBvac
ρm/n(ρm/n)

=
√

1/f2
scr + k2

θx
2 '

{
1/fscr, |x| � 1/kθfscr,

kθ|x|, 1/kθfscr � |x| ≤ 1/kθ.
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What Physics Causes Magnetic Flutter Transport?1,2

• Consider parallel heat conduction in a perturbed ~B field:

Represent magnetic field by axisymmetric ~B0 plus RMP field: ~B = ~B0+δ ~B.

Radial perturbation δB̂ρm/n(x) cos(mθ − nζ) induces ‖ heat flow along ~B

nearm/n surface for Te = Te(ρ) and neglecting magnetic shear [k‖(x)vTe<νe]:

δ~q‖m/n ≡ −nχ‖

(
~B ~B

B2
· ~∇T

)
' −nχ‖ ~B

δB̂ρm/n

B2
0

cos(mθ − nζ)
dT

dρ
≡

~B0 + δ ~B

B0

δq‖m/n.

Average radial (~̂eρ ·) heat flow induced by collisional ‖ heat flow along ~B is

〈~̂eρ · ~q〉 ≡ 〈~̂eρ ·
~B0 + δ ~B

B0

δq‖m/n〉 = 〈 δB̂ρm/n cos(mθ − nζ) δq‖m/n 〉.

This results in a radial electron thermal diffusivity of 1,2

χm/ne =
1

2

(
δB̂ρm/n

B0

)2

χe‖, which is to be summed over allmnmagnetic perturbations.

• Very small RMP-induced fields can induce significant χm/ne values:

For DIII-D pedestal2 χe‖ ∼ 1010 m2

s
, so

δB̂vac
ρm/n/B0

fscr

>∼ 10−5 yields χm/ne
>∼ 1

m2

s
.

• But magnetic shear reduces effective χe‖ for |x| > δ‖ ∼ 0.2 cm.
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Various Spatial Scale Lengths Can Be Important

• Radial distances from 11/3 rational surface in terms of the radial
coordinate ρ ≡

√
ψt/πBt0 for DIII-D pedestal top parameters2

(distances on outboard mid-plane are about half these numbers):

ion sound gyroradius ρS ∼ 0.2 cm

width for small magnetic shear effects on χe‖ δ‖ ∼ 0.2 cm

resistive MHD layer width δη ∼ 0.2 cm

visco-resistive (2-fluid6) MHD layer width δµη ∼ 0.5 cm

χe⊥ causes Te to not follow island topology7 W Te
c /2 ∼ 0.5 cm

magnetic island half-width (for fscr = 4) W/2 ∼ 0.7 cm

distance between rational surfaces 1/nq′ ∼ 2.8 cm

radial extent of δBplasma
ρm/n (x) increasing with |x| 1/kθ ∼ 6.7 cm

7R. Fitzpatrick, “Helical temperature perturbations associated with tearing modes in tokamak plasmas,” Phys. Plasmas 2, 825 (1995).
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Flutter Transport Model Employs Some Assumptions

1) RMP-induced perturbations are gyroradius small: δBρ/B0 ∼
ρS/R0

<∼ 10−3. Effects are linearly independent, quasilinear-type.

2) Use flow-screened RMPs from linear extended MHD codes —
explore self-consistency with nonlinear RMP-induced torque later.

3) If magnetic islands are present, they are thin, isolated ones
that do not overlap. (Model okay outside islands that do occur.)

4) Significant perpendicular electron heat transport and multi-
ple flow-screened RMP responses occur at each radius ρ, which
causes Te and ne to be ∼ constant on axisymmetric flux surfaces.

5) Significant flow-screened RMP-flutter responses extend radi-
ally over a number of rational surfaces: ∆m ' 2nq′/kθ (∼ 5).
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RMP-flutter Induces Radial Electron Heat Transport2

• A cylindrical screw pinch model of the radial plasma transport
induced by RMP-induced flutter has been developed;2 it yields

χRMP
e ≡

∑
mn

χm/ne , DRMP
e

<∼ χRMP
e /2.5,

χm/ne ≡ χref
m/n Fm/n(x), reference χref

m/n times spatial factor Fm/n,

χref
m/n ≡

1

2

[
δB̂vac

ρm/n

B0

]2

χref
‖c
[
kθδ‖c

]2
ρm/n
' 0.086m2/s at DIII-D pedestal top,2

χref
‖c '

5

4

[〈nut〉
n0

]3

νeλ
2
e ∼ 1.45×109 m2/s, ∼ Braginskii with ut particles,

δ‖c '
[〈nut〉
n0

]−2√2LS

kθλe
∼ 0.22 cm, λe ≡

vTe

νe
, electron collision length,

Fm/n(x) ≡
1

[kθδ‖c]2

[
δB̂ρm/n(x)plasma

δB̂ρm/n(ρm/n)vac

]2
χeff
e‖(x)

χref
‖c︸ ︷︷ ︸

1/(1+x2/δ2
‖c)

'
1/k2

θf
2
scr + x2

δ2
‖c + x2

,

in which x ≡ ρ− ρm/n is radial distance off the rational surface.
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Spatial Factor Fm/n(x) Varies Significantly & Is Important

• Fm/n(x) has different scalings in various radial regions:

Fm/n(x) ≡
1/f2

scrk
2
θ + x2

δ2
‖c + x2

'


1/(δ2

‖cf
2
fcrk

2
θ), |x| � δ‖c,

1/(x2f2
fcrk

2
θ), δ‖c � |x| � 1/fscrkθ,

1, 1/fscrkθ � |x| � 1/kθ.

• This causes different behavior for various screening models:

Resistive MHD with fscr ∼ 30, δ‖c ∼ 1/fscrkθ =⇒ Fm/n ' 1 = constant.

Visco-res. 2-fluid6 MHD with fscr ∼ 4 =⇒ highly peaked, Fm/n(0) ' 60.

Collisional pedestal5 with δ‖c ∼ 1/fscrkθ ∼ 2 cm =⇒ also Fm/n ∼ 1.

• This spatial factor has a significant effect on the Te gradient:2

−
dTe

dρ
'

Pe/V
′〈|~∇ρ|2〉

neχRMP
e

=
Pe/V

′〈|~∇ρ|2〉
ne
∑

mn χ
ref
m/nFm/n(x)

∼
1∑

mn Fm/n(x)
.
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Spatial Profile Of Fm/n Modifies Predicted Te Profile2

• Obtain Te profile by integrating dTe/dρ inward from 11/3 surface:

Te(ρ) = Te(ρ11/3)−
∫ ρ

ρ11/3

dρ
Pe/(neχ

ref
m/nV

′〈|~∇ρ|2〉)∑
mn Fm/n(x)

, average χe ∼
· · ·

−∆Te/∆ρ
,

which yields2 an average χ̄RMP
e of 0.5 m2/s for fscr = 30 or 1.2 m2/s for fscr = 4.
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RMP Flutter Induces Toroidal Torques On Edge Plasma

• Plasma toroidal momentum balance8 for Lt ≡ mini〈R2〉Ωt is:

∂Lt

∂t
=
∑

Tζ, torques Tζ ≡ − qs〈~Γs·~∇ψp〉 caused by non-ambipolar fluxes ~Γs.

• Ion & electron 3D density fluxes cause oppositely directed torques:

~Γi (NTV, ripple) create8 counter-current torques because qi = + e (Jρ < 0),

whereas electron density fluxes create co-current torques because qe = − e.

• RMP-flutter induces a non-ambipolar radial electron density flux
and hence a co-current torque (for offset frequency Ωfl > Ωt):

TRMP
ζ ≡ e 〈~Γ

RMP

e · ~∇ψp〉 ' nemi〈R2〉 νe
L2
S

6ρ2
S

B2
p

B2
0

(∑
mn

δB̂vac 2
ρm/n

B2
0

Fm/n

)
(Ωfl−Ωt),

flutter offset freq. Ωfl ' −
1

nee

dP

dψp

∼ 104 s−1 (> 0 =⇒ ~V
t

e⊥ ' −
cTt

eB0

dTe

dρ
).

• Low νe RMP-induced torque is localized near rational surfaces.

8See Eqs. (3)–(7) in J.D. Callen, “Effects of 3D magnetic perturbations on toroidal plasmas,” Nucl. Fusion 51, 094026 (2011).
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Cylindrical Model Has Been Compared2 To DIII-D Results

• Flutter predictions in qualitative agreement with experiment are:

scaling of χRMP
e and DRMP with δB2

ρ ∼ I2
coil,

ratio of DRMP/χRMP
e

<∼ 1/3, and

RMP-induced change in toroidal rotation (Eρ) to Ωt ∼ 104 s−1.

• But cylindrical χRMP
e is smaller than experiment at pedestal top:

in DIII-D χRMP
e exp ∼ 4 m2/s (#126440, 5.2 kA) while χsym

e exp ∼ 0.6 m2/s (#126443),

versus χRMP
e ≡

∑
m,n

χref
m/n Fmn(x) ∼ (5–12)(10−7) (106) <∼ 0.5–1.2 m2/s;

but should use and sum flow-screened δB̂plasma
ρm/n (x) + all possible mn fields.

• Additional routes to improved agreement with experiment:

toroidal model could increase magnitude of χRMP
e with

q95 ∼ 3.5 resonance if 10/3, 11/3, 12/3 RMP responses are modified.
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Toroidal Model Yields ‖ Flows & Radial Transport Fluxes

• RMP-induced parallel electron flow and conductive heat flux are9 (y ≡ v2/v2
Te)[

ne δVe‖
δqe‖

]
=

∫
u

d3v v‖

[
L

(3/2)
0

−L(3/2)
1 Te

]
δfe = − 2π

B0

Bmax

∫ ∞
0

v3dv

[
1

Te(y − 5
2
)

] ∫ 1

0

dλ |Re{δhu}|.

• These RMP-induced ‖ flows cause radial electron density and heat fluxes:[
δΓm/neρ

δΥm/n
eρ

]
≡

[
〈δ~Γe·~∇ρ〉
〈δ~qe·~∇ρ〉

]
=

〈∫
u

d3v δfe

[
1

Te(y − 5
2
)

]
~vg·~∇ρ

〉
=

〈∫
u

d3v δhu v‖

[
1

Te(y − 5
2
)

]
δ ~B ·~∇ρ
B0

〉

=

〈 [
ne δVe‖

δqe‖

]
δ ~B ·~∇ρ
Bt0

〉
= −ne

[
Dm/n
e D

m/n
T

χm/nn χm/ne

]
·
[
d ln pe/dρ− (e/Te)dΦ0/dρ

dTe/dρ

]
.

• Transport coefficients here are defined by kinetic coefficients matrix Kij:[
Dm/n
e D

m/n
T

χm/nn χm/ne

]
=
v2
Te

νe

1

2

(〈δBρn〉
Bt0

)2
[
K00 K01

K10 K11

]
,

[
K00 K01

K10 K11

]
=

Bt0

Bmax

∫ ∞
0

dy y3e−y

2
√
π

∫ 1

0

dλ |Re{Λ}|
[

1 y − 5
2

y − 5
2

(y − 5
2
)2

]
, in which y ≡ v2/v2

Te.

9J.D. Callen, A.J. Cole and C.C. Hegna, “Magnetic-perturbation-induced plasma transport in H-mode pedestals,” UW-CPTC 11-15, to be at
http://www.cptc.wisc.edu “soon.”
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Kinetic Matrix Coefficients Kij Result From Λ Solutions

• Resultant kinetic coefficients and their regimes of applicability are

|k‖| ' 0:

[
K00 K01

K10 K11

]k‖=0

=
2

3
√
π
fc
Bmax

Bt0

[
6 9

9 75/2

]
, for y <

1

|Xt|1/2
in which Xt ≡

x

δ‖t
,

k‖ 6= 0:

[
K00 K01

K10 K11

]k‖ 6=0

=
1

|Xt|3/2
Bt0/Bmax

8
√
π 〈v‖|λ=1/v〉

[
1 −3/2

−3/2 13/4

]
,

for y > ymin ≡ max

{
1

|Xt|1/2
,

1

X
1/2
crit

}
, Xcrit ≡

Bt0

2Bmax

λe

R̄q
' 22 (so νkλeff < ωut).

• Normalizing the kinetic coefficients to (13/4)K
kλ
11 and using energy smooth-

ing10 to develop a Padé approximation yields for the kinetic coefficient matrix[
Kt

00 Kt
01

Kt
10 Kt

11

]
=

13

32
√
π

Bt0/Bmax

〈v‖|λ=1/v〉

[
G00 G01

G10 G11

]
, in which coefficient ∼ 0.38 and matrix is

[
G00 G01

G10 G11

]
=

4

13 |Xt|3/2

(
|Xt|3/2

c‖t

∫ 1/|Xt|1/2

0

dy y3e−y+

∫ ∞
ymin

dy e−y

)[
1 y − 5

2

y − 5
2

(y − 5
2
)2

]
, c‖t ' 0.94.

• Properties of the geometric coefficient matrix that determine diffusivities are

lim
|X|→0

G11 =
150

13 c‖t
=⇒ χref

‖t ∼ 3.3× 1010, for |Xt| → ∞,
G00

G11

'
4

13
=⇒

Dm/n
e

χ
m/n
e

'
1

3.25
.

10K.T. Tsang and J.D. Callen, “Smooth transition of neoclassical diffusion from the banana to Pfirsch-Schlüter regime,” Phys. Fluids 19, 667 (1976).
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Toroidal Flutter Results9 Are Similar To Cylindrical Model

• Parallel electron thermal diffusivity on a rational surface:

toroidal, Lorentz collision value is larger — χref
‖t ' 3.3×1010 m2/s, while χref

‖c ' 1.5×109 m2/s.

• Layer width beyond which magnetic shear effects dominate:

toroidal width is smaller — δ‖t ' 0.11 cm, while δ‖c ' 0.22.

• Spatial decay of effective parallel diffusivities away from rational surface:

toroidal decays slower with |x| � δ‖ — toroidal G ∼ |x|−3/2, while cylindrical χeff
e‖ ∼ |x|−2.

• Magnitude of a single χm/ne midway between rational surfaces:

using δBplasma
ρm/n (x) on p 10, they are about equal — χ

m/n
e t ∼ 0.23m2/s, while χm/ne c ∼ 0.21m2/s;

but using δBplasma
ρ 11/3 (x) profile from Fig. 6, both estimates give χ11/3

e ∼ 2 m2/s at ΨN ∼ 0.955.

• Ratio of RMP-induced electron density to electron thermal diffusivity:

results are similar — D
m/n
e t /χ

m/n
e t ' 1/3.25, while Dm/n

e c /χ
m/n
e c ' 1/2.5.

• Radial RMP-flutter-induced electron transport fluxes:

toroidal fluxes have off-diagonal Kij matrix elements, while cylindrical model fluxes don’t.
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Some Predictions Are Different At High Collisionality

• ASDEX-U5 electron collision frequency νe is >∼×10 greater which

1) increases shear-effects width parameter by a factor ∼ ×10 to δ‖ ∼ 2 cm,

2) increases reconnection layer width by a factor ∼ 2 to δµν ∼ 1 cm,

3) causes most “smoothing” processes to exceed half of the distance between

rational surfaces and hence overlaps the effects around various m/n surfaces

— this causes q95 resonance effects and magnetic islands to be less likely.

•Model predictions for approximate ASDEX-U conditions are:

1) χRMP
e '

νeL
2
S

2

∑
mn

[
δB̂vac

ρm/n

B0

]2

>∼ 1 m2/s, LS ≡
R0q

s
magnetic shear length,

2) which reduces gradients throughout the pedestal if it exceeds a typical

level of Dη ∼ νeδ2
e transport there and yields an ELM mitigation criterion:

δ2
e ≡

c2

ω2
pe

'
3×1019

ne
10−6 <∼

L2
S

2

∑
mn

[
δB̂vac

ρm/n

B0

]2

=⇒ ne >∼ 5× 1019 m−3?
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Summary

• Experimental effects of ELM-suppressing RMPs on pedestals are:2

reduced |~∇P | at top via increasing LTe (<∼×6) & Ln (<∼×2)∝I2
coil, Ωt change.

• Flow screening inhibits RMPs in forming islands, stochasticity.

• But RMP-flutter induces1,2 radial transport at pedestal top:

both cylindrical2 screw pinch and toroidal9 models have been developed

— results are qualitatively similar and differ quantitatively mostly by <∼×2,

in high collisionality pedestals q95 resonances and islands are less likely.

• Comparison between flutter model predictions and DIII-D data:2

χRMP
e ∝ I2

coil, D
RMP/χRMP

e
<∼ 1/3, Ωt changes agree qualitatively, but

need increase of cyl. χRMP
e by >∼ × 3 and q95 ∼ 3.5 resonance via modified

10/3, 11/3, 12/3 RMP responses (∼ Fig. 6 δBplasma
ρm/n profiles might do both).

JDC/Edge-III session, 2012 TTF Annapolis — April 12, 2012, p 23



What Are Next Steps For Model Testing, Validation?

1) Use M3D-C1 flow-screened δBρm/n(ρ) to predict RMP-flutter-
induced transport and compare to ONETWO interpretive trans-
port modeling of electron thermal and density diffusivities,

to see if model magnitude, scaling are correct & it can capture q95 resonances.

2) Explore low versus high collisionality RMP cases with M3D-C1
RMP modeling plus ONETWO interpretive transport modeling,

to understand differences between RMP effects at low, high collisionality.

3) Employ quasilinear flutter model toroidal torque in M3D-C1
to explore its effects on toroidal rotation at the pedestal top,

to determine if flutter-induced torque plays a significant role in RMP effects.

4) Ultimately, treat toroidal rotation (radial electric field) on par
with n, T transport by coupling M3D-C1 to predictive ONETWO,

to develop a predictive capability for RMP effects in ITER plasmas.
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Toroidal:9 RMP-Induced Flutter Modifies e Distribution

• Electron drift kinetic equation for ~vg ≡ v‖ ~B/B + ~vd with ~B → ~B0 + δ ~B is2,9

∂fe

∂t
+

[
v‖

B
( ~B0 + δ ~B) + ~vd

]
·~∇fe +

dε

dt

∂fe

∂ε
= C{fe}, ε ≡

mev
2

2
− eΦ =

mev
2
‖

2
+ µB − eΦ.

• Lowest order solution is a Maxwellian constant along ~B0: fe = fMe(ρ, ε).

• For δBρ(~x, t) ≡
∑

n δBρn(ρ, θ)Re{e−i(nα−ωt+ϕn)}, in helical coordinates ρ, θ,

α ≡ ζ − (m/n)θ, equation for δh ≡ δfe − (e/Te) δΦ fMe induced by δBρn is9

v‖

B0

( ~B0·~∇θ)

∂ δhn
∂θ

+ i (m− nq)︸ ︷︷ ︸
(dα/dθ) (∂/∂ζ)

δhn

− i(ω − ωd) δhn − C{δhn} = −
v‖

B0

δ ~Bn·~∇fMe.

• Trapped particle solution solution vanishes — bounce average yields no drive

because trapped particles don’t carry any parallel flow over λe � 2πR0q.

• Magnitudes of frequencies indicate ω and ωd can be neglected (� νeff):

vTe/R0q ∼ 3×106, k‖vTe ∼ (0–8)×106, ω ∼ 104, ωd ∼ 104, νeff ∼ 2×105.
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Bounce-averaging Yields9 Non-adiabatic Response Eq.

• Neglecting ω, ωd & operating on δhn equation with
∫ π
−π dθB0/[v‖ ~B0·~∇θ] yields

ik‖v δh̄u − 2ν⊥
Bmax

Bt0

∂

∂λ

(
λ
〈v‖〉
v

∂ δh̄u

∂λ

)
= − v

〈δBρn〉
Bt0

∂fMe

∂ρ
, in which 〈· · · 〉 is FSA,

k‖(x) ≡ −
n[q(ρ)−m/n]

R̄q
' k′‖x, λ ≡

µBmax

ε
, δh̄u =

∫ π

−π

dθ

2π
δhu, 〈δBρn〉 ≡ 〈δ ~B ·~∇ρ einα〉.

• Since δh̄u is a mostly separable function, it is useful to write it as:

δh̄u ≡ −D(ρ)V (v, ρ) Λ(λ, x, v), in which D ≡
〈δBρn〉
Bt0

, V =
v

ν⊥(v)

d fMe

dρ
=

v4

v4
Te

vTe

νe

d fMe

dρ
.

• Then, equation above reduces to an equation for the pitch-angle function Λ:

∂

∂λ

(
λ
〈v‖〉
v

∂Λ

∂λ

)
− i

(
k‖ v

2 ν⊥(v)

Bt0

Bmax

)
Λ = − 1, with B.C.: 1) Λ(λ=1) = 0, 2) Λ(0) finite.

• This equation will be solved for Λ(λ) in two limits:

k‖ = 0 — on q = m/n rational surface, which will yield Braginskii-like result for χe‖, and

k‖ 6= 0 — for |x| ≡ |ρ− ρm/n| � δ‖ where magnetic shear effects become dominant.
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Pitch-angle Function Λ Can Be Solved For9 In Limits

• On a rational surface k‖ = 0 and Λ equation can be integrated directly:

Λk‖=0(λ) ≡
∫ 1

λ

dλ′

〈v‖(λ′, θ)〉/v
=⇒

∫ 1

0

dλΛk‖=0 =

∫ 1

0

λdλ〈√
1− λB/Bmax

〉 ≡ 4

3

B2
max

〈B2
0〉
fc.

• For large k‖ the solution will be localized in λ near the untrapped-trapped

particle boundary where λ <∼ 1. Thus, defining λ̃ ≡ 1− λ, equation becomes

∂2Λk‖ 6=0

∂λ̃2
− i 2 k2

λ

k‖

|k‖|
Λk‖ 6=0 = −

1

〈v‖|λ=1/v〉
, in which kλ(x, v) ≡

[
|k‖(x)| v (Bt0/Bmax)

4 ν⊥|〈v‖|λ=1/v〉|

]1/2

.

• Complementary solutions of this equation are of form e±
√
±2i kλλ̃ = e±(1±i) kλλ̃.

Boundary-layer-type particular solution that satisfies boundary conditions is

Λk‖ 6=0 = −
(i/2k2

λ)(k‖/|k‖|)
〈v‖|λ=1/v〉

[
1− e−kλλ̃(cos kλλ̃− i

k‖

|k‖|
sin kλλ̃)

]
.

• Key parameters of this solution can be written as

kλ(x, v) = |Xt|1/2
v2

v2
Te

, Xt ≡
x

δ‖t
, δ‖t ≡

ct

|k′‖|λe
=
ctLS

kθλe
' 0.11 cm, ct ≡ 4 |〈v‖|λ=1/v〉|

Bmax

Bt0

.

• Pitch-angle integral of this solution for kλλ̃� 1 (v2/v2
Te � 1/|Xt|1/2) is∫ 1

0

dλRe{Λk‖ 6=0} =
1

2k2
λ|〈v‖|λ=1/v〉|

∫ 1

0

dλ e− kλλ̃ sin kλλ̃ '
1

4 k3
λ |〈v‖|λ=1/v〉|

.
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