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Goals of nonlinear M3D-C1

Long time simulations to cover ideal, reconnection, and transport timescales
in same simulation

— Do not start run from unphysical unstable state, let it evolve into one

— Large S and wide separation of timescales enabled by large At ~ 10-100 t,

— Implies need for current controller, transport model, density and heat sources

High resolution and convergence studies to obtain quantitative results
Build physical model to be increasingly realistic 2F + kinetic model of plasma
Concentrate on applications of relevance to ITER

— Validation studies on existing experiments as available

Strive to be community code with sufficient documentation for others to use
and contribute to

— Should be viewed as an resource (not as a threat)

FY12: Demonstration runs with ~ 1000p
FY13: Will apply for INCITE time for higher resolution runs with ~10,000p



outline

Preconditioner effect on eigenvalues and condition number

New time advance options
Resistive MHD long-time runs with density and 2 temperatures

— Stationary helical state
— Sawtoothing discharge

2-fluid algorithm

— lon velocity form for velocity preconditioner
— Harned-Mikic terms

— Testing in 2D

— Testing in 3D



M3D-C*! can be run with 1, 2, or 3 velocity variables. Tracking the eigen-
values shows how they separate into 3 groups (before preconditioning)

Eigenvalues of velocity matrix
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Eigenvalues
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Velocity matrix is then preconditioned with a block-Jacobi preconditioner,
which corresponds to a direct solve of all 2D “in plane” submatrices
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Some Conclusions and observations

Condition number of preconditioned matrix is good (~ 30)!!

However, condition number of linear matrices (before
preconditioning) is large

— 10% (A=10) -- 107 (A=3)

May be able to improve condition number by shifting the

eigenvalues associated with the variable m up so they coincide
with the others.

— These are the new eigenvalues that appear when NUMVAR=2
Can this be done by just renormalizing the field ® ?7?

— However, ot clear that the condition number of entire matrix is
important since the three blocks are approximately uncoupled



New time advance options

V=R’VUxVp+0R’Vp+R?V »
B=VyxVp-V f'+FVep: V:f=F-F,
p.=nT, & p, =nT

—, , N+l — n+1
U v
Old split = n+1 n+1
advance o, = + [p]+ [n]
| X | | Pe
New split U™ n+1 n+1
advance o N 4 N T, N [n]n+1
A
Advantages:

» Advancing temperatures rather than pressure is necessary for stable implicit
advance when the (large) parallel thermal conductivity is included

« Advancing the two temps. together allows implicit treatment of equi-partition term



Application: Can we explain the differences in sawtooth behavior for
bean-shaped and elliptical-shaped plasmas that has been well
documented experimentally (Lazarus, Tobias, ...)
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We have imported these equilibria from geqdsk files, and inferred the
transport properties from the plasma properties...simulations in progress
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Goal is to match MHD spectra and 2D ECEI data from Tobias, et al.

Sustained, saturated
m/n=1/1 mode
precedes crash

R

_ / At or above core
' rotation estimate
from CERQUICK

Early “post-cursor”
type mode. Many
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V similar t_o the

downshifted mode
observed in the oval
case.

Bean (shots 144207, 08, 10)
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Initial nonlinear studies showed dramatic difference
between the bean and the oval shaped discharge
with the exact same transport parameters!
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Stationary Current Density for DIII-D Oval (shot 118164)
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Stationary velocity stream function for DIlI-D Oval (shot 118164)
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Original run repeated with new code with

Kinetic Energy

U | | @ temperature advance rather than pressure.
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« T-advance (more realistic) took
longer to settle into a stationary
state

» (g-profiles and Poincare plots
are similar...many islands
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Cuts across midplane show that old calculation (p-advance) had
larger 3D pressure distortion that newer (T-advance)
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Doubling the toroidal resolution shows markedly
different behavior ... periodic sawteeth

Kinetic Energy
B
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* In higher resolution case, plasma continues to exhibit sawteeth
* |s this due to a more accurate solution (low resolution case
wrong?) or evidence of a bifurcation?



Toroidal cuts of electron temperature during a single sawtooth cycle.
Note that crash occurs between time points 3 and 4.
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Toroidal cuts of electron density during a single sawtooth cycle.
(Note it increases where plasma temperature decreases)
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Toroidal cuts of current density during a single sawtooth cycle. At time
4, when current sheet is maximum, temperature has already crashed.
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KE

safety factor (q)

Evolution of safety factor during a single sawtooth cycle.
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safety factor (q)

Summary of 16 plane vs 32 plane
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16 plane case goes into
stationary state with many
islands

» 32 plane case exhibits
sawtoothing. Good surfaces
exist between sawteeth.

Questions:

1. Why are 16 plane case
and 32 plane case so
different? Initialization,
accuracy, or something
else?

2. Now running 64 plane
case



2-fluid split algorithm

Recall the split algorithm consists of a velocity solve followed by
separate solves for the fields, the temperatures, and the density.
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1. How is the velocity solve modified by 2F terms ?
2. How is the magnetic field solve modified by 2F terms?

V=R*VU xVp+wR’Vp+R*V y
B=VyxVep-V f'"+FVp: V:f=F-F
p.=nT, & p =nT



modified 2-fluid algorithm for velocity solve

M,V = (J+05t3 ) x (B +05tB )~V (p+05tp) +---
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2F GEM timestep convergence study with (YES-dashed curves)
and without (NO-solid curves) new operator in velocity equation
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New terms appear to (slightly) improve time convergence!



An aside on the poloidal flux advance
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Harned-Mikic terms

Dominant cross terms in field advance are marked in red
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Harned-Mikic terms-2

Implicit advance for the field variables have the Harned-Mikic
terms added to make the matrix more diagonal and improve the
3D iterative solution when 2F terms are present.

1 : F F P
Ve 2Vﬂ//+(«95’[di)2 (Hm)VL.|:R4n L(RZVL°R4nVﬂ/f j:|:
\ }
|
(B-V)' V2
1 . F .
—F +(66td. ) (H V F"=
R? ( ) \)nRZ nR* }
|

(Bv)'V?



Imag

Imag

-0.2 H

04

Eigenvalues of the field matrix after preconditioning (with no HM terms)
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Eigenvalues of the field matrix with d=.09 after preconditioning

showing the effect of the Harned-Mikic terms.
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but since matrix is non-symmetric, the significance of this is unclear.



Summary

Preconditioner effect on eigenvalues

— Block Jacobi preconditioner very effective in improving condition number of 3D
matrix in velocity solve.

New time advance options

— Now advance the temperatures rather than the pressures

Resistive MHD long-time runs with density and 2 temperatures
— stationary helical states with many magnetic islands

— sawtoothing discharges show rapid temperature collapse

— Bifurcation or non-convergence ???

2-fluid algorithm

— lon velocity form for velocity preconditioner
e Appears to improve time convergence in 2D test problem

— Harned-Mikic terms

* Needed for convergence of field solve iteration in 3D but not fully understood in
terms of the eigenvalues

e Testing in 3D underway
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