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1. Improve understanding of the present discrepancy between NIMROD and  
M3D and move to new CDX-U-relevant cases with more realistic parameters and 
sources. 
 
Q3: Develop an analytically specified equilibrium.  Apply NIMROD, M3D and a third 
code (MARS) for linear growth rate comparisons. 
 
Report: 
 
A method has been developed for analytically specifying an equilibrium configuration 
similar to CDX-U.   We are in the process of agreeing to the exact parameters to use in 
the NIMROD and M3D calculations, but they will make use of the formalism presented 
here. 
 
1.1. Derivation of Equations: 
Consider the steady-state MHD single fluid resistive equations in the absence of sources: 
 

0∇× =E                                                                           (1) 
 

η+ × =E V B J                                                                         (2) 
 

5
2 p∇ + =⎡ ⎤⎣ ⎦q V Ji Ei                                                              (3) 

 
p∇ = ×J B                                                                        (4) 

 
0μ = ∇×J B                                                                       (5) 

 
Assuming axisymmetry, we write the magnetic field in the normal way in terms of a flux 
function ψ , the toroidal field function g, and the axisymmetric coordinate φ  with 

1 Rφ∇ = : 
 

gφ ψ= ∇ ×∇ + ∇B φ

                                                

                                                            (6) 
 
In steady state, it follows from (1) and (2) that the loop voltage is a spatial constant: 
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Here brackets denote the standard flux surface average, subscript denotes partial 
differentiation, and V  is the derivative of the volume within a flux surface with respect 
to the flux function 

′
ψ .   

 
Equations (4)-(6) can be combined to give the Grad-Shafranov equation: 
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0 0R R R p ggψ μ− ′ ′∇ ∇ + + =i                                                            (8) 

 
Equation (8) can be solved together with (7) for the flux function ψ  if we specify 
boundary conditions (that  ψ  vanish on some boundary curve) and prescribe the constant 
VL and the two surface functions ( )p ψ and ( )η ψ .  Note that equation (8) can be surface 
averaged and combined with (7) to give another relation useful for obtaining the toroidal 
field function g. 
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It follows from (3) and (2) that in steady state, the surface averaged energy equation takes 
the simple form: 
 

0L
dK dQV
d dψ ψ

+ =                                                                  (9) 

 
Here the surface averaged integrated current density is 
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and the surface averaged total heat flux is: 
 

5
2Q V pψ′= ⎡ ∇ + Γ⎤⎣ qi ⎦                                                              (11) 

 
We have introduced the particle flux corresponding to collisional Pfirsch Schluter 
diffusion: 
 



( )

2

12 2 212 2 2
2 2

11 1
2

T
L

R

Bp g B B V
B B

η φ
φ

ψ ψ
η

π

−
−−

⎡ ⎤
Γ ≡ ∇ −⎢ ⎥∇⎣ ⎦

⎡ ⎤
2B

⎡ ⎤∇ ∇⎢ ⎥′= − + − − −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

J B
J

B
i

i
i

          (12) 

 
(The second relation is derived in [2]).  Let the random heat flux be given by 

2 2B Bnk T nk Tχ χ ′= − ∇ = − ∇q ψ .  Since VL is a constant, we can integrate (9) to obtain: 
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The second term in brackets in Eq. (13) is the convective term due to classical diffusion 
and will be neglected in the following.  It is assumed to be much smaller than the first 
term. 

 
1.2 Boundary and Profile Specification 
1.  The plasma boundary is parameterized with the 4 scalar variables (R0, a, κ,δ ) as 
follows: 
 

0( ) cos[ sin( )]
( ) sin( )

R R a
Z a
θ θ δ θ
θ κ θ

= + +
=

                                               (14) 

 
2. The temperature profile is taken to be linear in the normalized poloidal flux with 
central value T0: 

0( )T Tψ ψ=                                                                         (15) 
 

3. Here, the normalized poloidal flux is defined relative to the axis value ψA and the 
limiter value ψL, which are in turn determined by the equilibrium solution: 
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4. The pressure profile depends on the 2 scalar constants p0 and α: 
 

2
0( ) (1 )p pψ αψ α ψ⎡ ⎤= + −⎣ ⎦                                                    (17) 

 
5. The density and resistivity profiles are determined in terms of the pressure and 
temperature as follows: 

( ) ( ) 2 ( )Bn p k Tψ ψ ψ=                                                     (18) 
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with kB = 1.6022 × 10-19 J/ev   and C1 = ZEFF × 1.03 × 10-3 Ω-m  (assumes lnΛ=20) .  Note 
that this gives a central and edge electron density of: 
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6.  The toroidal field is determined by integrating Equations (7) when the boundary value 
g0 and the loop voltage VL are specified.  It is sometimes useful to specify the loop 
voltage in terms of the approximate central safety factor q0: 
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1.3 Input Parameters: 
In defining the standard equilibrium, we used the following parameters: 

 
var value definition comment 
R0 0.341 m Major radius Eq. 14 
a 0.247 m Minor radius “ 
κ 1.35 ellipticity “ 
δ 0.25 triangularity “ 
T0 100 eV Central Temperature (Te = Ti) Eq. 15 
μ0p0 2.5 E-4 Central pressure × μ0 Implies n0 = 1.8 × 1019 m-3

α 0.1 Parameter in pressure equation Implies ne = 1.8 × 1018 m-3

g0 0.042 T-m Vacuum value of  R × BT  
ZEFF 2.0 Effective Charge  
VL 3.1741 V Loop Voltage  From (21) implies q0~0.8 

 
 
1.4  Results 
The computed equilibrium had plasma current Ip = 44.4 kA, q(0) = 0.81.  The χ profile, 
as determined by Eq. (13), varied from 12.35 m2/s on axis to 118.8 m2/s at the edge. 
 
 
References for this section: 
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http://w3.pppl.gov/cemm/Project/Pfirsch-Schluter.pdf
[3] S. C. Jardin, “Lecture notes for AST 560: Computational Methods in Plasma Physics, 
Princeton University Spring 2007” 
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2. Perform a linear edge stability calculation in a non-diverted equilibrium with a 
resistive code, and compare results with the linear ideal MHD code ELITE. 
 
Q3. Repeat Q2 with equilibria that is closer to the threshold values. 
  
Report: 
 
2.1 Progress on ELM Benchmarking of ELITE and Extended MHD Codes: 
In the Q2 milestone report, we reported on the development of an inverse equilibrium 
suitable for use by nonlinear, initial value codes.  The equilibrium used is an inverse 
equilibrium with a “vacuum region” inside. The pressure profile is flat in the core to 
avoid pressure-driven core instabilities.  The current at the edge includes the self-
consistent bootstrap current using the Sauter model.   The pedestal width given is 
approximately 10% of the normalized poloidal flux, which is approximately twice the 
normal experimental width.  This was done to try and minimize the effects of the 
transition region from low resistivity to high resistivity for the initial value codes. 
 
 As expected, GATO and ELITE give excellent agreement with the equilibrium as shown 
in Figure 1.  The unique growth rate spectrum is due to the rational q’s which are near the 
surface, and is indicative of a strong peeling component in this case.  GATO was run with 
and without a wall at rwall/a=1.8 to give an indication of the importance of wall 
stabilization.  For this equilibrium, the wall is a relatively unimportant effect.   

 
 

 
Figure 1. ELITE and GATO give excellent agreement for this 
result.  The rapidly varying mode spectrum indicates the presence 
of a rational surface near the vacuum region (in this case, q=3) and 
a strong peeling component. 

 



2.2 NIMROD Computational Results: 
NIMROD has begun preliminary studies with this equilibrium.  The initial results are 
shown in Figure 2.  These cases were performed at values of S=105 in the core, and 
S=102 in the vacuum region, with the location of the transition region at x=0.78 versus 
the location of the vacuum region of x=0.755 (where x is the normalized poloidal flux).  
The growth rates are of the right magnitude, but the edge resonance is not detected for the 
parameters used.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Preliminary growth rates from NIMROD show the correct order of 
magnitude, but do not show the sensitivity to the edge resonance condition. 

 
The eigenfunctions show excellent agreement as shown in Figure 3 indicating that the 
correct modes are being found, if the growth rates do not yet have quantitative agreement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  The n=5 eigenfunction from NIMROD (left) and ELITE (right) show excellent agreement.   

 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  The growth rate results are sensitive to the location of the 
resistive transition region.  Here, the n=1 growth rate shows a 33% 
change in growth rate for a 2% change in transition location (note the 
the vacuum is located at x=0.755). 

 
To converge to the ideal result, the nonideal codes need to asymptotically take the 
resistivity in the core to zero, and the resistivity in the vacuum to infinity.  An important 
part in taking this limit is to explore the sensitivity of the growth rates to this transition.  
A measure of this sensitivity can be seen in examining the sensitivity of the growth rate 
to the location of the transition region.  This is seen in Figure 4.  The results show that for 
the n=1 mode, the results are sensitive to the location of the transition region indicating 
that converging to the ideal results is going to be challenging.   Work on this equilibrium 
is continuing. 
 
The motivation for converging the non-ideal codes to the artificial ideal limit is the 
success of ELITE in predicting the stability boundaries of the experimental 
measurements of Type I ELMs, and in predicting the width of the modes.  To this end, 
the ultimate goal is to understand how the prediction of the stability boundaries predicted 
by the non-ideal codes compares to the ideal codes.  We will report on these efforts in the 
next milestone. 
 
2.3 M3D Computational Results: 
The M3D code has been applied to the equilibrium described in Figure 1.  The results of 
that study are summarized in Figure 5: 
 

 
 
 



 
Figure 5  M3D linear growth rates compared to ELITE and GATO 

 
We find that the M3D linear growth rates comparable to ELITE and GATO for ηinner= 
106, ηouter=10-2.  However, the results are somewhat sensitive to the values and profiles of 
resistivity, and these are of course not in the ELITE model.  For the purpose of this 
comparison, 2-fluid and flow effects were absent 
 
2.4 Progress on Closures used for ELM Simulations: 
An analytic derivation of general, time-dependent parallel closures for electron and ion 
heat flows and stresses is underway.  Such closures will be useful in simulations of edge 
phenomena where the short (relative to resistive time scales) growth times of edge 
localized modes demand that the time derivative is kept in the kinetic equation. 
Importantly, these closures provide physical dissipation in the fluid model including 
Landau damping, presumably important near the top of the edge pedestal, and accurate 
collisional effects, important near the bottom of the pedestal. In addition to providing 
much needed smoothing of the fields in nonlinear simulations, such dissipation may be 
crucial to determining the nonlinear saturation and regulation mechanism of ELMs. 
 
The time-dependent theory follows that of Chang and Callen with some important 
improvements.  First, the linearized collision operator which uses a moment expansion 
yields quantitative results in the collisional limit.  Second, the initial condition for the 
distribution function and its influence on the closures is retained in the theory.  And 
finally, nonlinear effects due to perturbed density and temperature are retained. 
 
This final improvement is critical in light of the existing nonlinear ELM simulation 
results which exhibit substantial perturbation to the background fields. 
 
 



3. Extend the 2D GEM nonlinear benchmark to non-zero guide field and more 
extreme parameters.  
 
Q3:  Perform comparative study of non-zero guide field sequence 
 
Report: 
 
3.1 Problem Specification: 
What has become a “standard problem” in 2-fluid magnetic reconnection was proposed in 
[1].  We define an initial equilibrium in 2D slab geometry as follows; 
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All other quantities are initialized to zero.  A perturbation in the poloidal flux is applied 
at time t=0 as follows: 

( , ) cos cosx yx y k x k yψ ε= .                                                  (3.2) 
The initial equilibrium and perturbed current densities are just the Laplacian of the fluxes,  

0 2 0 2,J J .ψ ψ= ∇ = ∇   The computation is carried out in a rectangular domain: 
 and .  The system is taken to be periodic in the x- 

direction with ideal conducting boundaries at 
/ 2 / 2x xL x L− ≤ ≤ / 2 / 2yL y L− ≤ ≤ y

/ 2.yy L= ±   The parameters are chosen 
such that 2 /x xk Lπ= , /y yk Lπ= , with 25.6, 12.8,x yL L= =  and 0.1ε = .  
3.2 M3D-C1 Results 
The reconnection calculations presented here extend the GEM [1-2] reconnection 
problem to include a strong background (guide) magnetic field B0 as is present in a fusion 
plasma.  We find that the background field significantly delays the onset of the fast 
reconnection phase and reduces the maximum reconnection rate and the amplitude of the 
velocities that develop in the reconnection region.  This is illustrated in Figures 6-7. The 
nominal values of resistivity and viscosity are η=0.005 and μ=0.005. 
 
The curves in Figure 6 show the reconnected flux, the magnetic reconnection rate, and 
the kinetic energy as a function of time for the GEM problem defined above, but with 
different values of the background toroidal field:  0.2, 1.0, 2.0, and 5.0.  It can be seen 
that the case with B0 = 0.2 exhibits a fast reconnection phase which is very similar in 
structure and in magnitude to the B0 = 0 case presented in [2].  However, as B0 is 
increased to 1.0, 2.0 and then to 5.0 and beyond, the onset time of the fast reconnection 
phase is delayed substantially and the maximum rate is significantly reduced.   
 

 
 



 
 
 
 
 
 
 

 
 

Figure 6:  Reconnected flux,  reconnection rate, and kinetic energy vs. time for GEM reconnection 
case with different guide fields.   
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Figure 7 Central density vs. time for different guide fields. 
 
In Figure 7 we plot the density at the reconnection point as a function of time for the four 
cases of Figure 1a.  It is seen that as the toroidal field increases and the solution becomes 
more like the incompressible solution, the density at the center (reconnection region) 
decreases much slower to the far-field value. 
 



3.3 NIMROD Results 
Qualitatively similar results are found by NIMROD when comparing the reconnection 
with and without a guide field.  Figures 8 and 9 show very recent results comparing the 
no guide field case and the guidefield = 1 case.  The parameters are:  electrical diffusivity 
= 5.e-3, artificial particle diffusivity = 5.e-5 (10X smaller than previous), viscosity=therm 
diffusivity = 5.e-2,  electron mass = 1/100 of ion mass.  It can be seen that the Bguide = 1 
case reconnects substantially slower than the Bguide = 0 case, and that the kinetic energy is 
greatly suppressed. 

 

 
Figure 8:  NIMROD kinetic energy vs time for no guidefield and guidefield=1 cases 

 
 

 
 



 
Figure 9: NIMROD reconnected flux for no guidefield and guidefield=1 cases 

 
3.4 Discussion 
The explanation for the marked difference between the low (or zero) and high guide-field 
cases has to do in part with the evolution of the plasma density as shown in figure 7.  In 
the zero or low guide field cases, the compressibility of the flow causes the density to 
quickly deplete in the reconnection region, increasing the effect of the Hall term and 
thereby accelerating the reconnection.  The faster the fluid reconnects, the lower the 
density at the reconnection point becomes, and thus the sudden shock-like transition.  As 
the guide field is increased, the fluid is forced to become more incompressible, removing 
this effect and thus greatly decreasing the maximum reconnection rate.  However, it is 
clear that the density evolution alone cannot explain the differences in the reconnection 
rates, as we see from Figure 6 that the B0=5 case eventually reaches the same low density 
as the B0=0.2 case, but the reconnection rate never reaches that of the lower guidefield 
case. 
 
 
References for this section 
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4. Scalability studies on leading edge computers.   
 
Q3:  Repeat scaling studies for improved performance 
 
Report: 
M3D is now fully functional and runs efficiently on the whole machine (5120 nodes, 
10,240 processors) of the Jaguar Cray XT3 computer at ORNL. Impressive weak and 
strong scaling results have been obtained using only one of the two processor cores on 
each node. Excess of 60-80% overall efficiency was observed when going from 64 to 
5120 nodes. This result was obtained using the "Hypre" algebraic multigrid solver within 
PETSc for solving the compute intensive linear equations in M3D each timestep that 
arise from the elliptic equations. More details of the scaling results can be found at 
http://w3.pppl.gov/m3d/scale.html. 
 
NIMROD has obtained very favorable parallel scaling results in problems where the 
parallel closures dominate the running time.  They have demonstrated over 70% 
efficiency in strong scaling in going from 1024 to 2048 to 4096 processors on Seaborg.  
More details can be found at http://w3.pppl.gov/CEMM/Sherwood2007/Held.pdf 
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