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Executive summary 
This document reports the successful completion of the OFES Theory Milestone for 

FY2005, namely, Perform parametric studies to better understand the edge physics regimes of 
laboratory experiments.  Simulate at increased resolution (up to 20 toroidal modes), with density 
evolution, late into the nonlinear phase and compare results from different types of edge modes. 
Simulate a single case including a study of heat deposition on nearby material walls. 

The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in 
tokamak plasmas are investigated through numerical computation.  Data from the DIII-D device 
at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) 
equilibria, but edge parameters are varied to reveal important physical effects.  The equilibrium 
with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to 
dissipation coefficient values.  Here, linear growth rates from the non-ideal NIMROD code 
(http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the 
GATO global linear stability code at low toroidal mode number (n) and with ideal results from 
the ELITE edge linear stability code at moderate to high toroidal mode number.  Linear studies 
with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce 
more significant discrepancies between the ideal and non-ideal calculations.  The maximum 
growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates 
in the non-ideal computations continue to increase with n unless strong anisotropic thermal 
conduction is included.  Recent modeling advances allow drift effects associated with the Hall 
electric field and gyroviscosity to be considered.  A stabilizing effect can be observed in the 
preliminary results, but while the distortion in mode structure is readily apparent at n=40, the 
growth rate is only 13% less than the non-ideal MHD result.  Computations performed with a 
non-local kinetic closure for parallel electron thermal conduction that is valid over all 
collisionality regimes identify thermal diffusivity ratios of 87

|| 1010~/ −⊥χχ  as appropriate 
when using collisional heat flux modeling for these modes.  Adding significant parallel viscosity 
proves to have little effect. 

Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 
0≤n≤21, including anisotropic thermal conduction, temperature-dependent resistivity, and number 
density evolution.  The computations are based on a realistic equilibrium with high pedestal 
temperature from the linear study.  When the simulated ELM grows to appreciable amplitude, 
ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens 
about a peak at n=13.  Analysis of the results finds the heat flux on the wall to be very 
nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber.  Net 
thermal energy loss occurs on a time-scale of 100 μs, and the instantaneous loss rate exceeds 1 
GW.
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1.0 Introduction 
With recent advances in computer hardware and numerical algorithm efficiency, 

large-scale computational modeling can play an important role in the design and analysis 
of fusion devices.  Among the nations engaged in developing magnetic confinement 
fusion, the US remains the world leader in plasma simulation.  An example of an 
important fusion problem that is being addressed by this approach is the onset and 
nonlinear evolution of Edge Localized Modes (ELMs) and their effect on global 
confinement and first wall performance [1].  These modes shed thermal energy from the 
edge of the confinement region and, in their most virulent form, release enough energy to 
be of concern for plasma-facing components of future burning plasma experiments.  They 
may also affect the core plasma through nonlinear mode coupling.  During FY2005, the 
NIMROD Team (http://nimrodteam.org) has begun a numerical study of the global 
dynamics of ELMs in tokamaks.  The unique capabilities of our advanced extended-
MHD model [2] allow us to simulate ELMs farther into the nonlinear regime than what 
has been previously achieved. 

Previous studies have found the underlying character of ELMs to be an MHD 
instability described as “peeling-ballooning” [3-5].  The “peeling” component of the 
instability is the free-energy drive due to the current density gradient, and the 
“ballooning” component is the free-energy drive due to the pressure gradient.  At the 
edge of the confinement region of tokamaks, poloidal flows reduce energy transport and 
allow a steep pressure gradient to develop.  Through bootstrap-current effects, the strong 
pressure gradient drives highly localized charge-current density.  The pressure and 
current gradients are also coupled through the MHD equilibrium force-balance, but they 
effect distinct characteristics in the linearly unstable modes that are excited.  An 
individual ELM will typically display a combination of both sets of characteristics, 
however. 

Our linear stability analysis of a set of tokamak equilibria having varying degrees of 
peeling and ballooning drive is outlined in Section 2.  A sequence of nonlinear 
simulations follow a spectrum of ELMs from the linear stage to finite amplitude, where 
they become coupled and transport heat beyond the confinement zone and to the wall.  
These results are presented in Section 3.  A brief summary and discussion is presented in 
Section 4. 
2.0 Linear Stability 
2.1  Ballooning-component-dominant equilibria 

A model tokamak equilibrium configuration has been constructed to be robustly 
unstable, due to low magnetic shear and poloidal shaping, while remaining in the global 
parameter space of typical DIII-D discharges.  The localized edge current density and 
pressure gradient described in Section 1.0 are clearly evident in the profiles shown in 
Figure 1.  This ballooning-dominant configuration is relatively easy to resolve radially.  
Consistent with the MHD theory of ballooning modes, the resistive MHD computations 
find that growth rates increase monotonically with n.  The unfortunate implication is that 
toroidal resolution in a nonlinear resistive MHD simulation cannot be achieved.  
Nonetheless, this equilibrium provides a suitable benchmark case for comparing linear 
results obtained with different numerical approaches. 
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The linear results of NIMROD compare favorably with results from the ELITE and 
GATO [4] codes with eigenfunctions and growth rates that are in reasonable agreement.  
The growth rates computed by NIMROD with non-ideal MHD depend on the resistivity 
and viscosity in the vicinity of the mode, as discussed below, but the variation of growth 
rate with n agrees qualitatively with the GATO and ELITE results, as shown in Figure 2.  
Varying the electrical resistivity shaping parameter by three orders of magnitude affects 
the growth rate values (by less than a factor of 2), but it does not change the spectrum 
qualitatively.  Here, the magnetic Prandtl number (Pm, the ratio of kinematic viscosity to 
electrical diffusivity) is held fixed while both the core and surrounding resistivity values 
are varied.  In obtaining the results for this equilibrium, the linear behavior of 22 toroidal 
modes have been determined with 3 values of resistivity and 3 values of thermal 
conductivity, for a total of 198 numerical calculations.  The results represent the first 
linear ELM studies to include collisionality and separatrix effects. 

 
Figure 1.  Safety factor (q), parallel charge-current density (j⋅b/b2), and pressure profiles for the low-shear 
equilibrium discussed in Section 2.1.  The computational mesh of finite elements used for the linear 
computations is also shown. 
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Figure 2.  Linear growth rates for a range of n-values with confinement-region resistivity (ηcore) and 
surrounding layer resistivity (ηvac) varied show good agreement with ideal MHD codes.  Because the 
eigenfunctions extend into the open-field line region, the growth rates depend on the “vacuum” resistivity, 
but the changes are less than a factor of 2. 

 
2.2. Realistic equilibria 

Equilibria reconstructed with data from a high-pressure DIII-D discharge that 
produced ELMs provide the basis of this investigation.  The poloidal magnetic field 
configuration has a single null below the confinement region.  The non-dimensional 
geometric and profile properties are also similar to high performance tokamak operation 
(“H-mode”) in Alcator C-mod (http://www.psfc.mit.edu) and advanced scenarios for 
ITER (http://www.iter.org).  The parallel current density, magnetic winding ratio (or 
‘safety factor,’ q), and pressure profiles for three of the equilibria are shown in Figure 3.  
They are parameterized by their edge pedestal temperatures (Tped) with the 100 eV, 400 
eV, and 700 eV profiles shown in the figure.  The q-value is above 1 across each profile, 
which stabilizes the internal ideal kink mode and allows our study to focus on edge-
localized modes.  The equilibrium with   Tped =100 eV does not have any significant 
gradients in the edge. 

The linear stability properties of this set of equilibria have been studied with the 
NIMROD code with the Lundquist number (S) set to 2×107.  The linear growth rate 
spectrum with respect to toroidal mode number is shown in Figure 4 for two of the 
equilibria. All modes for the Tped = 400 eV and 700 eV cases are found to be unstable, 
and the growth rates of the unstable modes increase with increasing n.  The 

  Tped = 700 eV computation produces large linear growth rates ( 36.0=Aγτ , where τA is 
the global Alfvén propagation time) at low Pm-values with the non-ideal model.  This 
indicates that the respective equilibrium is well above the threshold for ideal linear 
instability, a condition that is unlikely to occur in the actual experiment. The Tped = 100 
eV equilibrium is near the stability boundary. 
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Figure 3.  MHD equilibria representative of DIII-D with successively decreasing pedestal temperature but 
similar cross sectional shape.  The top figure shows the parallel current profiles, the middle figure shows 
the q-profiles, and the bottom figure shows the temperature. 

Resistive MHD produces growth rates that increase with n for ballooning-dominant 
equilibria, but high-n ELM fluctuations are not detected in experiments.  Conventional 
wisdom holds that two-fluid effects are stabilizing at large n-values, and this is often 
cited to explain the observations.  We have applied extended MHD modeling [6] to the 
equilibria shown in Figure 3 (also see Ref. [5]), and preliminary results for the Tped = 400 
eV equilibrium are summarized in Figure 5.  Here we plot the linear growth rate as a 
function of the toroidal mode number for three different models (MHD, Hall-MHD, and 
Hall-MHD with gyroviscosity) with and without anisotropic (χ || /χ⊥ =107) thermal 
diffusivity.  The strongest stabilizing effect is provided by the anisotropic thermal 
diffusivity, where the ratio of diffusivity coefficients has been determined by 
computations performed with a non-local kinetic closure for parallel electron thermal 
conduction that is valid over all collisionality regimes [7].  A linear computation for the 
Tped = 700 eV equilibrium without anisotropic thermal conduction finds only a 13% 
reduction in growth rate when Hall and gyroviscous effects are included at n=40. 
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Figure 4. Linear growth rates as a function of toroidal mode index n for the equilibria with pedestal 
temperatures of 400 eV (blue trace) and 700 eV (red trace).  The 100eV equilibrium is near the stability 
threshold. 

 

 
Figure 5.  Linear growth rate as a function of toroidal mode number for the case of 400 eV pedestal 
temperature, S = 3.7×107, Pm = 10-3. 
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3.0 Nonlinear Resistive MHD 
Nonlinear, resistive MHD simulations with anisotropic heat conduction have been 

performed with several of the equilibria discussed above.  Here, we present a 
computation that is based on the Tped=700 eV equilibrium shown in Figure 3.  Small 
amplitude perturbations in the initial conditions excite unstable ELMs, and the 
computation follows their evolution well into the nonlinear phase.  The electrical 
resistivity is temperature-dependent (Spitzer resistivity, based on the evolving toroidally 
averaged temperature).  The viscous diffusivity and perpendicular thermal diffusivity are 
25 m2/s, and the parallel thermal diffusivity is 105 times larger.  The spatial domain is 
represented by an appropriately packed 40×72 mesh of biquartic finite elements for the 
poloidal plane and Fourier components 0≤n≤21 for the toroidal direction. 

The temporal evolution of the kinetic energy associated with each of the toroidal 
Fourier components is shown in Figure 6.  There is a linear growth phase for 0.05 ms < t 
< 0.1 ms, followed by nonlinear saturation.  Only modes in the range     7 ≤ n ≤19 exhibit 
linear growth, as shown in Figure 7.  In contrast to the results shown in Figure 4, the 
growth rate spectrum is peaked around   n =13.  This is attributed to the anisotropic 
thermal conduction (see Figure 5), viscous dissipation, and the large current-gradient 
(peeling component) at the edge of the confinement region in this equilibrium.  
Numerical convergence tests indicate that while greater resolution is needed to achieve 
quantitative accuracy, the peaked linear spectrum is qualitatively correct.  Other modes 
may be linearly unstable but grow too slowly to show independent activity before 
nonlinear coupling becomes significant.  Of particular importance is that the nonlinear 
coupling drives low n-fluctuations (including n=1), in addition to high-n fluctuations, and 
low-n activity in the edge may excite resonant effects in the core plasma. 

 

 
Figure 6.  The evolution of kinetic fluctuation energy (on a logarithmic scale) of each toroidal harmonic 
shows that the broad linear mode spectrum nonlinearly drives the linearly stable n=0 and n=1 components.  
They have the largest energies at the end of the simulation. 
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Figure 7.  Linear growth rates measured from the early phase of the nonlinear simulation shows a broad 
spectrum peaked at n=13.  The equilibrium is the same as the Tped=700 eV profile of Figure 3. 

The character of the non-linear behavior of the edge modes in this discharge is 
summarized in Figures 8-10, which show several properties of the discharge at selected 
times during the evolution.  The upper right hand section of each of these figures shows 
color contours of the pressure in the  φ = 0 toroidal plane.  The blue region represents the 
cold plasma outside the confinement region.  The black overlaid contour is a surface at 
which the normal component of the convective heat flux ( nTqV Vn ⋅= ˆ ) is computed.  
(This simulation has a computational domain that extends “self-similarly” beyond the 
confinement region.  The surface at which the heat flux is measured also conforms to the 
boundary, and the outboard midplane location corresponding to the position of the DIII-D 
wall.)  The lower right hand section contains a Poincaré plot of the magnetic field-line 
punctures in the   φ = 0 toroidal plane.  The lower left hand section shows perspective 
views of pressure contours at four toroidal planes equally spaced around the torus.  This 
displays the three-dimensional structure of the dynamics.  The upper left hand section 
shows color contours of the convective heat flux at the surface indicated by the black 
contour shown in the upper right hand section.  This contour has been “unwrapped” into 
the poloidal-toroidal plane.  Arrows show the relationships between the poloidal locations 
in this plot and the black contour in the figure to the right.  Only the convective heat flux 
is shown because its contribution to the heat loss is greater than that of the conductive 
heat loss, in contrast to NIMROD simulation results on plasma disruption due to an 
internal mode [8]. 
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Figure 8.  Convective heat flux as a function of  poloidal arc length and toroidal angle is shown, at t=0.115 
ms.  Arrows indicate location of the measures of poloidal arc length.  The three dimensional structure can 
be seen by the pressure contours in the lower left corner. 

Figure 8 shows that configuration at t = 0.115 ms, the start of the nonlinear phase.  
Small corrugations are visible in the pressure contours, but the magnetic field-lines trace 
out nested flux surfaces, and there is no significant loss of heat.  Figure 9 shows the 
configuration at t=0.144 ms, the time of peak amplitude of convective heat flux.  Ribbons 
of plasma pressure now extend beyond the black boundary contour and have eroded a 
significant portion of the plasma core.  The field in the edge has become stochastic, 
contributing to heat loss.  The convective heat flux appears as bright spots on the 
boundary surface, primarily near the top and bottom of the chamber.  An overall striation 
pattern in the heat flux deposition is evident.  The striation pattern differs in the four 
major regions: outboard, top, bottom (separatrix), and inboard.  The maximum heat flux 
is localized in the top and bottom regions with greatest concentration in the top region, 
where the triangularity of the equilibrium is not as strong.  Figure 10 shows conditions at 
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the end of the calculation, when the ribbons are retreating back toward the plasma.  The 
mode structure increases in poloidal extent, and the heat flux structure shows little 
difference between the top region and the upper inboard region.  The differences between 
the upper inboard region and lower inboard region are due to the lower single null 
configuration of this plasma.  These preliminary results suggest that high triangularity 
would be effective in preventing heat flux from reaching the inboard side.  The magnetic 
field remains stochastic over much of the outer portion of the discharge.  

The evolution is more dynamic than what is evident from still figures.  An animation 
of the evolution represented by Figures 8-10 can be found at 
http://fusion.txcorp.com/~kruger/elma10n_images/elma10n.gif. 

 

 
Figure 9.  At t=0.144 ms, the heat load on the wall is at its peak.  The three-dimensional load structure 
shows complicated structure that has penetrated toward the interior of the plasma. 
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Figure 10.  Near the end of the simulation, the poloidal extent of the mode has increased and the field is 
almost completely stochastic.  The n=1 structure can be seen within the high harmonic structure. 

The nonlinear evolution of this mode drives a rapid loss of internal energy with 
approximately 70 kJ (~10%) of the internal energy being lost within 60 μs, as shown in 
Figure 11.  Laboratory measurements indicate 15-20% energy loss during large ELM 
events in DIII-D [1], and we note that the numerical simulation has not completed the 
ELM cycle.  The internal energy is still decreasing at the end of the simulation while 
pressure is lost over the entire pedestal region.  The computation finds that the primary 
loss channel is convective (nTV) rather than conductive (q), which is not inconsistent 
with laboratory measurements [1]. 
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Figure 11. As a result of the nonlinear evolution of the ELM activity, approximately 10% of the internal 
energy is lost within 60 μs. 

4.0.  Discussion and Summary 
 Because of the deleterious effects of ELMs on plasma performance and operation, 
it is important to understand both their onset and the manner in which they deposit heat 
on the wall.  A better understanding of onset will lead to operations and control 
techniques that avoid the most harmful form of ELMs.  Knowledge of heat transport can 
be used to engineer configurations that are robust to ELM activity.   

 The linear studies in this report represent the first significant parameter scan to 
consider the effects of a separatrix and collisionality on ELMs.  At present, the results 
must be considered preliminary, since more numerical convergence testing is needed.  
The results are sufficiently mature, however, to provide a useful guide for the 
requirements of nonlinear simulations.  The nonlinear simulation presented here is the 
first to show significant plasma-wall interactions as a result of an ELM instability over a 
global computational domain.  While the nonlinear simulation is also preliminary in 
many ways, it appears to reproduce some important experimental observations such as 
the energy loss time-scale and the heat loss mechanism.  This suggests that nonlinear 
fluid simulations have potential to provide insight into how ELMs evolve and deposit 
heat onto the wall.  Further refinements of the simulations will include more accurate 
geometry, improved boundary conditions, and more refined physics models, such as non-
linear two-fluid and gyro-viscous effects. 
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