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I. Executive Summary
In this report, we present the successful completion of the 2006 Q1 milestone, namely: an n=0 steady-state near the 2005 700 eV equilibria was found. Because the H-mode equilbria used in the ELM studies are the most challenging equilibria ever used by nonlinear initial-value, extended MHD codes, details on the numerical challenges are presented. This quarterly milestone motivated new development of the NIMROD code: namely more flexibility in source specification and run time operation.  These development will allow NIMROD more flexibility in meeting the challenges of subsequent milestones.

II. Statement of Problem
At the conclusion of the 2005 ELM milestone, the NIMROD code successfully ran an ELM simulation far into the nonlinear regime allowing for the study of heat flux on the wall.  Even in those successful simulations, numerical difficulties occurring at the separatrix occurred well beyond where a “separatrix” could be clearly defined.  Because of NIMROD’s “separation of equilibrium variables” (to be discussed in Section III.B.), these problems were believed to be associated with how the n = 0 steady-state fields are initialized.  The M3D code observed similar numerical problems when using the equilibrium as given.  Because of these problems, the first quarterly milestone was chosen to investigate the n = 0 solutions and determine a more appropriate initialization – one that would prevent numerical issues.  The ability to have an appropriate n = 0 state as the initial condition will prepare the codes for the more challenging milestones in the coming year.

III. Technical Background
A. Equilibrium Definition
In tokamaks, the plasmas are often quiescent with very little non-symmetric components of the fields.  It is the low-frequency, long-wavelength deviations away from this symmetry that is studied with nonlinear, initial-value, extend MHD codes.  To study the deviations, extended MHD simulations of large tokamaks generally start with symmetric fields coming from a Grad-Shafranov equilibrium.  As discussed below, the Grad-Shafranov equilibrium is a subset of the steady-state MHD equations.  Considerable effort has gone into experimentally reconstructing the symmetric fields based on the Grad-Shafranov model.  The most widely-used code for performing this reconstruction is the EFIT code from General Atomics.  Because we are interested in nonlinear simulations of ELMs, the equilibrium code used to initialize the code must include the separatrix; i.e., it must be a free-boundary GS solver.  Beyond EFIT, a widely-used code for this purpose is the TEQ code from LLNL. 

To place the initial conditions of the nonlinear initial-value codes in context, we briefly review the extended MHD equations.  The extended MHD equations that we are solving are:
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Gen. Ohm’s Law: 
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Energy: 
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where J is the plasma current density, and p is the plasma pressure (total unless subscripted for the species). To form the complete set of evolution equations, we use the “pre-Maxwell equations”; i.e., Maxwell’s equations without the displacement current.
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Ampere’s Law: 
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Faraday’s Law 
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The lack of displacement current (and concomitant disregard of Gauss’s Law) is the “quasineutrality” approximation, which is 
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. This approximation is valid for the low frequencies (2 << c2k2) studied in extended MHD. 
The form of the generalized Ohm’s law (Eq. 1.c) generally distinguishes the commonly used extended MHD.  In this document, we will make reference to three models: ideal MHD, resistive MHD, and extended MHD.  These are:

Ideal MHD: 
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Resistive MHD: 
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Extended MHD: 
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(3c)
In addition to neglecting the resistivity, ideal MHD ignores all other dissipative terms (i.e., no viscosity and all terms on right-side of Eq. 1.d. are neglected).  Resistive MHD traditionally has neglected all terms on right-side of Eq. 1.d. although there is no standard nomenclature in the literature.

To derive the “steady-state” solutions of the extended MHD equations, two assumptions are usually made: (1) the diffusive terms operate on time-scales much longer than the “steady-state” and can be neglected, and (2) we consider n = 0.  The first assumption allows the definition of “steady-state” to be the transport time scale, which is generally much slower than the time scales of the instabilities we wish to study.  This is discussed further in Section III.B. Using these assumptions, the relevant equations are:
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Momentum: 

[image: image13.wmf]  

mn

0

V

0

·

Ñ

0

V

0

=

-Ñ

p

0

+

J

0

´

B

0

 ,


(4b)

Gen. Ohm’s Law: 
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Energy: 
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In addition to the two assumptions above, two other assumptions are commonly made: 1) No equilibrium flow, and 2) Neglect the two-fluid terms (right side of Eq. 4c); i.e., only consider ideal MHD.

The first assumption allows the momentum equation (Eq. 4b) to decouple from all other equations.  The momentum equation can then be written in a form called the Grad-Shafranov Equation.  All linear MHD codes use this as their input.  Note that in this case, the Ohm’s law can be solved independently of the Grad-Shafranov equation to determine the current sources.  Separate codes are usually used to determine what fraction of the current comes from Ohmic drive, bootstrap current (from the stress tensor term in Eq. 4c), Pfirsch-Schluter currents, and current drive.

Removing the first assumption, but keeping the second, allows the derivation of a modified Grad-Shafranov equation [Hameiri81].  For purely toroidal flow, the modifications are rather trivial and implemented by several codes.  While more accurate, these modifications are generally not included in equilibrium reconstructions because the characteristic flows in experiment are generally a quarter of the Mach speed, which gives corrections that are small compared to other uncertainties in the equilibrium reconstruction.  It is hoped that as diagnostic improve, especially in determining the flow profiles, the inclusion of this term will become more routine.  For flows that are both poloidal and toroidal, the modified Grad-Shafranov equation includes a singularity when the polodial flow reaches the poloidal Alfven Mach number.  Because of poloidal flow damping, poloidal flows are generally unimportant, although they may be significant near the edge.  With the exception of a recent code written by a student of Betti, [need ref], no code includes poloidal flow.

Removing all assumptions regarding equilibrium solutions has been done only recently.  Inclusion of the two-fluid terms automatically requires the inclusion of the inertia term in the momentum equation to have the proper treatment of the drift flows.  No code currently solves for the two-fluid equilibrium equations, nor are any initial value codes prepared to accept two-fluid equilibria.  In the future, including this capability may be important for the extended MHD codes.

B. Separation of Variables and Diffusive Sources

For the technical discussion below, we will discuss two separate modes of operation for the NIMROD code: “separated equilibrium mode” and “n = 0 mode”.   The general prescription for deriving the form of the equations solved in NIMROD is to separate the quantities into a “steady-state component” and a dynamic component: 
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.  In all subsequent equations, the terms that contain purely steady-state factors are not explicitly included; rather, they are assumed to satisfy the constraints given by Eq. 4 and hence do not appear in the dynamical equations.  The dynamical component thus represents the deviation from the steady state solution given in Eq. 4; it does not represent the total plasma state.  This has implications on the interpretation of the equations.  To understand this, we consider this prescription for a purely diffusive pressure equation:
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where we assume a constant diffusivity.  With homogeneous Dirichlet boundary conditions, the steady-state solution of this is p=0.  Separating into dynamic and stready state solutions, the dynamic equation is:
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The steady state solution is 
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 is assumed to exist and be maintained by some external mechanism.  The implication is that a source has implicitly been added to the equation.  This has been the default manner in which NIMROD has run – in particular, the successful ELM milestone was performed using this method.


To understand the implications better, we want to rewrite our equation with an explicit source:
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To derive Eq. (7), the cancellation is 
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so that 
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.  We term this type of source a “diffusive source” and it is can be present in all of the equations that have a diffusive term.  The physical effect of the source is to maintain the equilibrium profiles.  (This assumes the diffusivity is fixed.  Temperature-dependent diffusivities will have slightly different behavior).  The advantage of using the sources is that for tokamak runs they approximate the real sources within a tokamak for the time-scales under consideration.


The point is that Eq. (6) (for the “dynamical” component) and Eq. (8) (for the “total” component) are mathematically equivalent.  The default way for NIMROD to run tokamak simulations has been to use Eq. (6).  We can solve Equation (5), which is the equivalent of Eq. (8) (informally called the “transfer eq mode” on the NIMROD team) without the sources.  The M3D team uses the equivalent of Eq. (8).  

IV.  Technical Approach


A.  Characterization of the Equilibrium
In this work, we only investigate the “Pedestal Te=700 eV” equilibrium because it was the case used in the 2005 Milestone case.  The results and implications of this study are generic to H-mode equilibria in general.


The equilibrium is shown in Fig. 1.  As shown, the current density is localized near the separatrix.  Although the equilibrium was constructed such that the flux surface average of parallel gradient (<J.B/B2> ) is zero, there are large local poloidal variations in the poloidal current.  The toroidal gradient is defined to be exactly zero beyond the separatrix.  Although the experiment has some finite current in the scrape-off-layer (SOL) region, at this time there is no satisfactory method to obtain those currents in such a way that the equilibrium conditions are exactly satisfied.
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Figure 1.  The equilibrium used in the 2005 Milestone report has a large localized toroidal current gradient near the separatrix, and a strong poloidal variation in the current, despite the fact that the flux surface average of the parallel current is constant.
The effect of the sharp current gradient can be seen in the cylindrical components of the poloidal magnetic field shown in Figure 2.  The sharp discontinuities at the separatrix are readily apparent.  Also apparent are the rapid variations of magnetic field on the inboard side.  This is caused by the existence of the poloidal magnetic field coils on the inboard side.  The equilibrium codes numerically handle the coil fields using a Greene’s function technique which allows them to avoid the difficulties of the fields near the coils.  
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Figure 2.  The cylindrical components of the magnetic field show the sharp discontinuities due to the sharp current gradients as well as the effect of poloidal field coils on the inboard side of the plasma.
As discussed in Section II.B., the 2005 Milestone simulations were run with “implicit sources”. i.e., the form given by Eq. 6.  Because we had no equilibrium flow, there were no momentum sources.  Because we evolved only the total temperature, there was no electron pressure source.  The sources were thus are a current source and a pressure source.  As the equilibrium parameter plots of Figure 1 suggests, these implicit sources are highly localized.  In addition to the large, localized gradients, the temperatures are low leading to large diffusivity parameters (when using Braginskii coefficients).  In Figure 3, the source for the resistive Ohm’s law and temperature equation are shown when Braginskii coefficients are used (for the 2005 Milestone case, the Braginskii resistivity was used for the resistive Ohm’s law.).  Clearly these fixed sources play an important role in the ensuing dynamics

The NIMROD runs to date have used these sources in the “separated equilibrium mode” (
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) and have generally been successful.  The simulations are difficult, and in this work we will investigate the extent to which the sources can cause problems.  The M3D code has performed their initial simulations by reaching a nearby steady-state using the code itself, i.e, solving Eq. 8.  Our goal is to reach a similar state. 
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Figure 3.  The diffusive sources in H-mode equilibria are very large near the separatrix when using Spitzer values.  The low temperatures lead to large diffusivity values and H-mode equilibria have sharp edge pressure and current gradients.
B.  Comparison of  NIMROD modes of operation at low diffusivity 
We are ready to discuss the n = 0 behavior of the ELM equilibria.  We wish to study investigate the n = 0 behavior of the 2005 Milestone case with parameters similar to the results presented in the final report.  The case has 36x40 cells with polynomial degree of 3.  The temperature-dependent resistivity is evolved with a realistic S = 1x108.   The peak resistivity is constrained to be 243 times the lowest resistivity.  The viscosity is constant throughout the domain with a Prandtl number in the core of 6,250, and a Prandtl number in the vacuum region of 26.  The viscous diffusivity and perpendicular thermal diffusivity are 25 m2/s, and the parallel thermal diffusivity is 105 times larger.

We present two types of simulations: a “separated equilibrium” simulation that has implicit diffusive sources (i.e., Eq. (6)), and a “transferred equilibrium” simulation that has no source to maintain the fields (i.e., Eq. (5); in this case the “steady state” component of the solution appears only as an initial condition) .  The time histories of the kinetic energy of the two runs are shown in Figure 4.  As shown, after one microsecond, the energies differ by more than 13 orders of magnitude.  Since we do not believe the n = 0 mode is inherently unstable, we conclude that the initial “steady state” solution, as given by the Grad-Shafranov reconstruction from the experimental data, is not in sufficient force balance. 
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Figure 4.  A comparison of two modes of NIMROD operation show a dramatic difference in behavior.  The top assumes that the steady state is in exact force balance.  The bottom uses the steady state as initial conditions.  In one microsecond, the resultant kinetic energies differ by 13 orders of magnitude.

To explore the cause of the difficulties in the transferred equilibrium simulation (with the steady state used as initial conditions), we examine the behavior early in the time history.  In Figure 5, we show plots of the radial (using major radius of the tokamak) of the velocity (because it is the largest component), and the toroidal current density (not the contravariant component).  After the first time step, the current density has significant inboard current fluctuations.  The reason for this is that the “equilibrium current” in this case is computed from using Faraday’s law (Equation 2(b)) using the finite-element representation of the magnetic field shown in Figure 2.  Because of the transfer of fields from one discretization scheme (in this case finite difference and spectral Greene’s functions) to another (a finite-element mesh), the errors manifest themselves as large toroidal current fluctuations.  These toroidal current fluctuations then act to drive large flows.  This is because the reconstructed solution is not in steady state on a sufficiently long time scale when transport effects are taken into account.
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Figure 5.  On the first time step, the toroidal component of the current density shows significant fluctuations on the inboard side near the poloidal flux coils.  These fluctuations drive large flows on the inboard side within the first time step.

The same quantities are shown in Figure 6 after 90 time steps later (tsim=9.4 x 10-7 sec).  At this time, one can see that the induced numerical noise is beginning to broaden, and is not dominant at the edge.  From both Figures 5 and 6 we note the separatrix location is clearly identified.  Two sources of difficulties can be seen in these initial studies: 1) the equilibrium fields on the inboard midplane are difficult to numerically simulate because the rapidly varying magnetic fields there, and 2) the separatrix presents its own source of difficulties.
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Figure 6.  The velocity field begins to broaden although the difficulties with the current density still remain.
C.  Development of an n = 0 steady-state solution 
The typical method for developing an n = 0 steady-state solution for subsequent initialization is to add large diffusivities to the equations and just evolve the n = 0 solution to a time assymnptotoc steady state (referred to as “equilibrium relaxation”).  This method is used by the M3D code, the TSC transport code, and the HINT code for three-dimensional equilibria.  The advantage of this approach is that it is a robust method for finding suitable equilibria for subsequent simulation.  The disadvantage is that it can complicate the analysis of the simulations when the parameters depend sensitively on the equilibria used.  (The equilibria obtained from “relaxation” may differ in local detail from the original Grad-Shafranov equilibrium.)

The NIMROD code has not extensively performed simulations of this type (i.e., “relaxation”) for tokamak equilibria.  The goal of this work is to not only perform these types of simulations, but take advantage of NIMROD’s separated equilibrium functionality and investigate its role in the development of a steady-state solution; i.e., why do separated equilibria work so well?  The discussion of Section III.B suggests that it is because the toroidal current, which is inconsistent with the magnetic field representation in the equilibrium reconstruction, is more accurate on the inboard midplane.  However, the difficulties at the separatrix also point to the existence of problems there.  Do the implicit diffusive sources help in these cases?

To answer these questions, the NIMROD code was programmed to add to new capabilities: running in the transferred equilibrium mode with diffusive source (i.e., Eq. (8)), and  running with the separated equilibrium mode with no sources.  This gives us 4 cases to compare: with and without separated equilibrium, and with and without sources.  Because of the difficulties with the current discussed above, the simulations are run at S = 1.354E+03 in the core, to be able to have the transferred equilibrium cases run and allow accurate comparisons.  The viscosities are run at values of 25, 250, 2500, and 25000 m2/s.  The thermal diffusivities are held to the same values as the cases discussed in Section III.B.  Although anisotropic thermal conduction is generally considered unimportant, it was included in the simulations to ensure a proper equilibration of the n = 0 steady-state.
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Figure 7.  Time history plots for the transferred equilibrium case with sources for kinematic viscosities of 25, 250, 2500, and 25,000 m2/s.
We first discuss the transferred equilibrium cases.  The time history plots for the cases with and without sources are quantitatively similar.  For simplicity, only the time history plots for the case with sources is shown.  The peak kinetic energy and decay time corresponds to the magnitude of the viscosity as one would expect.  The two highest cases have clearly reached an n = 0 steady-state as shown.

The types of steady state reached are different.  Considering only the largest viscosity for simplicity, we compare the toroidal current and magnetic field in Figure 8.  As expected, the case that has a source acting to maintain the equilibrium has a steady-state that is closer to the original equilibrium.  The case without sources has smoother fields.
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Figure 8.  A comparison of the transferred equilibrium cases with sources (top) and without sources (bottom).  The magnetic field for the case with sources looks similar to the magnetic field shown in Fig. 2 unlike the case without sources.

The separated equilibria cases have much different behavior.  We first consider the typical NIMROD run which has the implicit diffusive sources.  All of the cases with the various viscosities have a similar time history plots with the kinetic energy never rising above 10-10 Joules.  With such small changes, there is essentially no discernible differences in the equilibria from what has been shown in Figures 1 and 2, so they will not be shown.


The case of separated equilibria with no sources shows some interesting differences from the equilibrium cases.  As one would expect, the plasma evolves to move away from the having the sharp gradients, with the time scale corresponding to the viscosity time scale.  The time history plots of the kinetic energy is shown for two viscosity cases in Figure 9. After relatively fast transients, the plasma evolves on a transport time scale as expected.  For the highest viscosity case shown in Figure 10, the current density peak is slightly broader than previous cases as one would expect.  The overall magnetic field differs a little from the equilibrium magnetic field, but not significantly.  
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Figure 9.  The time history plots of the kinetic energy for the separated equilibrium case with no sources for the viscosities of 250 (left) and 25,000 (right).  
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Figure 10.  The torodial current density and magnetic field are very similar to the equilibria, but slightly broader.  The current extends into the open field region slightly.
V.  Conclusions


Nearby, n = 0 steady state solutions have been found using two different numerical methods under two different simulation conditions: with and without sources.  The quality of the “separated equilibrium mode” greatly surpasses that of the “transferred equilibrium mode”, and in the near term is likely to be the preferred method of running NIMROD.  The development of the code to allow for each mode of operation to include or neglect the sources is beneficial to performing these types of studies and has greatly increased the flexibility of the code.


In this work, we have focused on creating an n = 0 steady-state that can be used to create a well-posed initial condition for the nonlinear simulations.  The larger question is what is the right initial condition for studying the physics we want.  To date, the equilibria have primarily been chosen based on its linear MHD stability properties.  As we move forward, we will need more information from transport codes so that all of the profiles can simultaneously satisfy the steady-state condition.  As shown above, understanding the sources is very important, and will only increase in importance as we move to two-fluid studies.  


Although we state transport code information is needed, we note in passing that the ability to work with high-quality free-boundary equilibria is crucial.   To date, we have been getting our free-boundary equilibria from the EFIT and TEQ codes without much regard for the transport properties.  An identification of the transport codes that can help us needs to be made, and interfaces from those codes to those of NIMROD will need to be defined.  We also note that the preliminary transport studies have shown current extending beyond the separatrix.  Allowance for current on the open fieldline could potentially help by allowing for more continuous gradients on our meshes.
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