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Report on completion of first quarter elm simulation milestone 
1st Q (end of December 04) 
Quantify the scaling of unstable modes with resistivity and thermal conduction, and 
compare to linear codes   
 
The study of the nonlinear evolution of edge localized modes in theoretical and 
computational plasma physics has only recently begun.  A new initiative was formed to 
study the extended MHD evolution of these modes with NIMROD, and compare with 
linear results of codes like ELITE and GATO, and the nonlinear results from recent 
simulations with BOUT, to understand the basic physics of the nonlinear evolution from 
a number of perspectives.  The first quarterly milestone of the year, stated above, is the 
subject of this report.  Only linear computations and results are considered in the first 
quarter milestone. 
 
A simple equilibrium configuration was constructed to be unstable only to a robust edge 
instability with low shear and shaping, with both ballooning and pealing characteristics, 
and yet to reside in the zero dimensional parameter space of typical DIII-D discharges.  
This equilibrium is shown in Figure 1.  Using this equilibrium the linear results of ELITE 
and GATO were favorably compared to the NIMROD results, showing the same 
eigenfunctions and that the growth rates in a NIMROD simulation depend weakly on the 
resistivity and viscosity in the vicinity of the mode but are in qualitative agreement with 
GATO and ELITE, as seen in Figure  2.   

 
Figure 1.  The equilibrium profiles and shape used in this study. 

 
These linear computations were the culmination of an aggressive campaign to understand 
and solve the challenges associated with simulating edge localized modes in tokamaks 
with the NIMROD code.  In carrying out this study, the linear behavior of 22 toroidal 



mode numbers were each computed with 3 values of resistivity and 3 values of thermal 
conductivity, for a total of 22 X 9 = 198 cases.  Each case required 16 processors on the 
NERSC SP3, for a total of 3168 processors.  Each calculation required approximately 24 
hours to complete, so this study represents the use of 76032 processor hours.  Nonlinear 
simulations will take much longer. 
 

 
Figure 2.  An example of an n=21 eigenfunction (left) and a comparison between the n=7 
eigenfunction from ELITE (center) and NIMROD (right), showing the overall agreement in 
mode structure.  The exterior part of the ELITE eigenfunction is not plotted.   

 
As mentioned, several computational parameters were varied in this campaign, and 
vacuum was found to have a small but significant effect on the growth rate of the mode, 
which implies that the mode has a resistive component, as shown in Figure 3.   Here the 
Prandtl number (ratio of the kinetic viscosity to resistivity) is held fixed while both the 
core and vacuum resistivities are varied.   
 
 



 
Figure 3. The effects of resistivity changes.  Between the blue and black 
curves the resistivity is only changed in the vacuum region and slightly 
across the mode region, while viscosity is held fixed. 

 
In NIMROD, the dvac parameter is the ratio of the vacuum resistivity to the core 
resistivity, while kinetic viscosity is constant everywhere.  The profile of resistivity 
smoothly transitions at the separatrix between the two values, but since these modes are 
localized in that very region, both the width and magnitude of the transition to the 
vacuum resistivity effect the mode growth rate somewhat.  The scaling with resistivity is 
very weak since the mode is predominantly ideal, and changes in core resistivity also 
change the viscosity at fixed Prandtl number.  This is not so when dvac alone is 
changed.  In Figure 3 the growth rates increase significantly with dvac.  Changes in 
viscosity alone had little effect on the growth rates of the mode, but further studies are 
needed on viscous effects in future.  
 
However, no systematic study of the effects of core resistivity and parallel thermal 
diffusivity had been completed.  These physical effects will be important in the nonlinear 
phase of the evolution, but it is best to interpret nonlinear results in terms of linear results. 
As a first step we consider the linear stability of a two dimensional set of equilibria, with 
three values of core resistivity  and three values of parallel thermal diffusivity, holding 
the vacuum resistivity fixed.   
 
In Figure 4 are shown a subset of these results for three toroidal mode numbers n=1,6 and 
21.  The growth rates increase with n as expected without a hyperviscosity filter, but also 
increase with S.  This is likely due, in part, to the reduction of the viscosity as the Prandtl 
number is held fixed, but previous results (above) have shown that the resistivity alone 
can change the mode growth rates.  The effect of dissipation on the linear behavior of 
ideal modes can be either stabilizing or destabilizing, depending on whether damping or 
the breaking of the frozen field line constraint is dominant.  In general the dependence of 
the growth rates on thermal diffusivity is weak in the linear phase.  The ratio of 



diffusivities should decrease near the edge and into the vacuum region, which can be 
important in the nonlinear evolution.  But linearly the scaling is weak. 

 
 

Figure 4. The growth rates vs. S for a series of three parallel thermal 
diffusivities.  In the linear phase, growth rate is relatively insensitive to the 
parallel thermal diffusivity.  Growth rates increase weakly with S, as the 
Prandtl number is held fixed and kinetic viscosity is reduced. 

 
 

 
Figure 5. The growth rates as a function of n for three values of S and parallel conduction.  
The Prandtl number is held fixed.  Note that the higher mode number growth rates begin to 
decrease with n at higher resistivity and viscosity. 
 

 



In Figure 5 is shown the full set of growth rate results.  The convergence of the S=5e8 
cases is marginal, and error bars would be larger than 10%.  Several intermediate to low n 
modes are not quite settled into a set eigenfunction and growth rate, and have very slowly 
decaying if not overstable oscillations in the growth rates as seen in Figure 6.  Most are 
close enough to suffice, but by taking an average of the data over time we set the 
convergence condition to be when the average of the kinetic energy and magnetic energy 
growth rates differ by less than 0.1%.  The persistent oscillations in growth rate could 
also be the signature of overstable modes, which are not ruled out when the system is 
dissipative. 

 
Figure 6.  The growth rates emerging as a function of time in two example 
calculations.  The higher n modes tend to not have fluctuations, while lower n 
modes do.  These fluctuations cause some standard deviation in the intermediate n 
growth rates in Figure 5. 
  

These results suggest that the resistivity profile across the region of the separatrix is 
important, even in the linear calculations of edge modes.  Although there is a weak 
scaling of the growth rates with the resistivity, the resistivity varies strongly across this 
region, and the vacuum resistivity setting can be important.  In Figure 3 the resistivity 
everywhere is decreased by a factor of 10, along with viscosity, from S=1e6 to S=1e7, 
this decreases the growth rates.   When the vacuum resistivity alone is increased the 
growth rates increase.  In these latest results we see an increase of growth rates with 
decreasing core resistivity while the vacuum resistivity is held fixed.   A theoretical 
explanation of this is pending. 


