
Ideal and Resistive Edge Stability Calculations with M3D-C1

N. M. Ferraro,1, 2, a) S. C. Jardin,3 and P. B. Snyder2
1)Oak Ridge Institute for Science and Education, Oak Ridge, TN
2)General Atomics, La Jolla, CA
3)Princeton Plasma Physics Laboratory, Princeton, NJ

Growth rates of edge localized modes (ELMs) for various benchmark equilibria, including a diverted equilib-
rium, are calculated using the non-ideal fluid code M3D-C1. Growth rates calculated by M3D-C1 in the ideal
limit are found to agree with those calculated by ideal MHD codes. The effects of nonuniform density and
resistivity profiles are explored, as well as the sensitivity of growth rates to the position of the ideal vacuum-
plasma interface. Growth rates of diverted equilibria are found to be particularly sensitive to the position
of this interface. The resistivity profile within the plasma is found not to affect growth rates significantly;
however, growth rates may be greatly reduced by treating the outer region as a resistive plasma instead of
an ideal vacuum. Indeed, it is found that for typical scrape-off layer (SOL) temperatures, the resistive SOL
model behaves more like an ideal force-free plasma than a vacuum.

I. INTRODUCTION

In present tokamaks operating in high-confinement
mode (H-mode), the steep pressure gradients at the edge
are often observed to relax through frequent, intermit-
tent discharges of energy, known as edge localized modes
(ELMs). The physics of ELMs is a key issue for planned
reactor scale tokamaks, such as ITER, both because the
onset of ELMs constrains the pressure at the top of the
edge barrier (or ”pedestal height”), and because the ELM
event can transport substantial heat and particle loads
to plasma facing materials. If not controlled, ELMs in
ITER are predicted to deliver energy to some plasma-
facing components at levels at or above that which can
be safely and sustainably handled.1

A predictive understanding of the onset of type-I ELMs
has been gained via the development of the peeling-
ballooning model of ELMs, in which ELMs are trig-
gered by instabilities driven by the large pressure gra-
dients and bootstrap current in the edge. This model
was initially formulated in the local, high toroidal mode
number (high-n) limit,2 and has since been extended
to calculations of non-local eigenfunctions at intermedi-
ate mode numbers (n ∼ 3–30) which are expected to
be physically dominant.3–5 The peeling-ballooning model
has been quantitatively tested against observed ELM on-
set and pedestal constraints on several tokamaks in a
wide variety of cases.3–9 In comparisons to experiment,
peeling-ballooning mode stability has typically been cal-
culated in the ideal MHD limit, in many cases in conjunc-
tion with a simple analytic model of diamagnetic stabi-
lization, γ2

MHD = ω(ω∗ − ω), where γMHD is the ideal
MHD growth rate, ω is the complex frequency, and ω∗ is
the ion diamagnetic frequency.10,11 This model results in
a threshold γMHD > ω∗/2 for instability in the presence
of diamagnetic effects, but does not account for spatial
variation of ω∗ (beyond using an average or typical value
of ω∗ across the radial mode structure). Furthermore,
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other non-ideal effects, such as those arising due to finite
collisionality, have not yet been explored in detail. In or-
der to test and improve upon the ω∗ model of diamagnetic
stabilization, and to gauge the importance of other non-
ideal effects accurately, it is necessary to appeal to mod-
els that include these effects self-consistently in general
geometry. Recently, peeling-ballooning calculations have
been undertaken using non-ideal codes NIMROD,12–14

BOUT,15,16 and BOUT++.17 Here we use M3D-C1 to
explore ideal and non-ideal peeling-ballooning stability.

M3D-C1 is an initial-value finite-element fluid code
which has been used mainly for two-dimensional non-
linear two-fluid equilibrium calculations.18 Recently it
has been modified to allow the calculation of three-
dimensional linear stability of axisymmetric equilibria.
The comprehensive physical model employed by M3D-
C1 allows the quantification of many non-ideal effects on
peeling-ballooning stability. Furthermore, the computa-
tional domain in M3D-C1 extends across the separatrix,
which allows both an accurate description of eigenmodes
which cross the separatrix (as ELMs do), and allows
treatment of the outer region (the region between the
plasma and the wall) as a resistive plasma.

A primary goal of this paper is to verify the nu-
merical methods of M3D-C1 by attempting to repro-
duce the results of ideal calculations in the appropri-
ate limit, in order to gain confidence in future non-
ideal calculations. In section III B we present cal-
culations of peeling-ballooning growth rates and show
that, in the ideal limit, the M3D-C1 results are in
good agreement with those of ideal codes. In par-
ticular, we focus on comparison with results from
ELITE,3,19,20 which itself has been benchmarked against
a number of other codes including GATO,21 MISHKA,22

DCON,23 CASTOR,24 MARG2D/MINERVA,25,26 BAL-
MSC, ILSA,27 MARS,28 BOUT++, and NIMROD.

We then extend these results by exploring the sensitiv-
ity of the growth rates to the density and resistivity pro-
files in the edge and in the outer region. Due to the sin-
gularity at the active x-point of diverted plasmas, most
ideal codes do not extend the ideal plasma region fully
to the separatrix, but rather place the plasma-vacuum
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FIG. 1. A section of the n = 30 eigenmode of the dbm18 equi-
librium overlaid with the finite element mesh. The magenta
line represents the foot of the pedestal.

interface slightly within the separatrix. The sensitivity
of peeling-ballooning growth rates to the location of this
interface is calculated in section III C.

II. NUMERICAL METHODS

M3D-C1 implements a set of visco-resistive two-fluid
equations similar to the Braginskii equations,29 although
transport coefficients are not constrained to take the Bra-
ginskii values or scalings.18 These equations may include
anisotropic thermal diffusivity and viscosity, including
gyroviscosity. In the present benchmark, in which we
seek to obtain results in the limit of ideal MHD, the dis-
sipative terms (except resistivity), two-fluid terms, and
gyroviscosity are neglected. Although M3D-C1 has the
option of using reduced MHD models, we use the full,
compressible fluid model here.

The domain is discretized in the poloidal plane us-
ing triangular C1 finite elements.30 The C1 elements al-
low the efficient use of a flux/potential representation of
the velocity and magnetic field, which results in fourth-
order differential operators.31 This representation has

the advantages that the magnetic field ~B is manifestly
divergence free, and also that it is possible to repre-
sent displacements which manifestly do not compress the
toroidal magnetic field. Furthermore, the flux represen-
tation allows easy identification of magnetic surfaces in
(R,Z) coordinates, which is exploited in section III B
to approximate an ideal plasma-vacuum interface accu-
rately. The finite elements are arranged on a fully un-
structured mesh, to allow packing of resolution in regions
that require it. An example of a typical mesh used in the
present study is illustrated in figure 1. In these linear
simulations, a single toroidal Fourier mode is considered
at a time.

In the split, semi-implicit time step implemented in
M3D-C1, the velocity is advanced using a temporal dis-

FIG. 2. Growth rates are calculated using two different
time-step methods for the three equilibria described in sec-
tion III A, at various mesh resolutions. Here

˙

h−1
¸

is the
average inverse element length-scale of the mesh, and kθ =
nqc/ 〈rc〉 is the approximate poloidal wavenumber of the
mode, where qc is the safety factor at the center of the
pedestal, 〈rc〉 is the surface-averaged minor radius at the cen-
ter of the pedestal, and n is the toroidal mode number (n = 10
here). Each curve shows the fractional difference from the
growth rate calculated with the most highly-resolved mesh in
the curve.

cretization of the form
(

1 − δt2θ2L
)

~un+1 =
(

1 − δt2αL
)

~un + . . . . (1)

where L is the ideal MHD operator.18 Using θ-centered
time differencing, one finds α = θ(θ− 1); however, it has
been shown that numerical dissipation may be reduced
by letting α = θ2 and staggering the time-centering of the
fields (particle density, pressure, and magnetic) relative
to the velocity, as with a leapfrog method.32 In particu-
lar, it has been shown that stationary solutions obtained
with α = θ2 are more accurate than with α = θ(θ− 1).18

However, it is found here that linear eigenmodes obtained
using α = θ2 exhibit small-scale spatial oscillations in
the absence of dissipative terms. These oscillations may
significantly impact the calculated growth rate unless the
features of the eigenmode are highly resolved everywhere;
this is difficult to achieve in practice because the peeling-
ballooning eigenmode structure is very fine (though not
generally large in amplitude) on the high-field side and
near the x-point of diverted plasmas, where the magnetic
pitch angle is relatively shallow. In contrast, the choice
α = θ(θ−1) naturally dissipates these small-scale spatial
oscillations, and growth rates obtained with this choice
of α are found to be less sensitive to the spatial resolu-
tion. The sensitivity of both choices of α to

〈

h−1
〉

, the
average mesh element inverse length scale, is illustrated
in figure 2. (The inverse length scale is used in order to
give more weight to the smaller elements, in which the
eigenmodes are mostly localized.) All of the results that
follow have been obtained using α = θ(θ − 1).
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FIG. 3. The surface-averaged ballooning parameter 〈α〉 and
normalized parallel current density |J‖/B| of the three equi-
libria studied here, as a function of the normalized poloidal
flux Ψ.

III. RESULTS

A. Equilibria

Benchmarks of M3D-C1 have been carried out for three
equilibria of increasing numerical difficulty, each of which
is unstable to ideal peeling-ballooning modes at interme-
diate to high toroidal mode numbers.

1. The cbm18 equilibrium is a circular cross-section
plasma. The pedestal width, calculated here as
the full-width at half-max of the peak in 〈α〉 (de-
fined below), is approximately ∆Ψ ≈ 0.12. The
plasma resides within a circular cross-section con-
formal conducting wall with a major radius of 3 m
and a minor radius of 2 m. The normalized flux at
the wall is Ψw = 10/7.

2. dbm18 differs from the cbm18 equilibrium in that
it is shaped, with an ellipticity of 1.5 and triangu-
larity of 0.2, and has a narrower pedestal than the
cbm18 case, with ∆Ψ ≈ 0.08.

3. The Meudas1 equilibrium is designed to be char-
acteristic of a diverted H-mode plasma in JT-60U.
The calculation of linear eigenmodes of this equi-
librium is significantly more challenging than for
the cbm18 and dbm18 equilibria, due both to the
narrower pedestal (∆Ψ ≈ 0.06) and to the presence
of an x-point, near which the rotational transform
vanishes and the poloidal length scale of the eigen-
mode diverges (see figure 8). Unlike in the cbm18

and dbm18 cases, the conducting boundary in the
Meudas1 case is not conformal to a flux surface,
and comes quite close to the foot of the pedestal.

The profiles of the surface-averaged ballooning param-
eter 〈α〉 and normalized parallel current density

〈

|J‖/B|
〉

are plotted for each equilibrium in figure 3, as a function
of the normalized poloidal flux Ψ, defined as:

Ψ =
ψ − ψ0

ψb − ψ0
, (2)

where ψ is the poloidal magnetic flux per radian (to which
we refer simply as the “poloidal flux”). The poloidal flux
at the magnetic axis is ψ0, and ψb is the poloidal flux at
the foot of the pedestal, i.e. the magnetic surface furthest
from the magnetic axis for which the pressure gradient is
nonzero. The surface-averaged ballooning parameter is
defined to be

〈α〉 = − 1

2π2

∂V

∂ψ

√

V

2π2R0

〈

∂p

∂ψ

〉

(3)

where V is the volume enclosed by the flux surface, R0

is the major radius at the magnetic axis, and p is the
pressure. The surface average is defined as

〈A〉 =

∮

C
dℓ
Bp

A
∮

C
dℓ
Bp

(4)

where Bp is the magnitude of the poloidal component of
the magnetic field, and C is the contour defined by the
poloidal projection of the magnetic surface.

B. Comparison of Ideal MHD results

In ideal MHD, the plasma is modeled as a perfectly
conducting fluid surrounded by a vacuum, all of which
may or may not be enclosed by a perfectly conducting
boundary or a resistive wall. The transition region be-
tween the plasma and vacuum is assumed to be infinitesi-
mally thin. This assumption is difficult to model in M3D-
C1, which makes no algorithmic distinction between the
“plasma” and the “vacuum”—the outer region is simply
treated as a region of high resistivity plasma—because it
requires a discontinuous jump in the resistivity and mass
density. A discontinuous field may be approximated sim-
ply by having a sharp but continuous transition region;
the ideal result should then be obtained in the limit that
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the transition region narrows to zero width. However,
the resolution required to obtain converged results in this
limit may be extraordinarily high, even when a nonuni-
form mesh is used to pack resolution near the transition
region. This problem is exacerbated by the use of C1

elements, which constrain not only the fields to be con-
tinuous, but their first derivatives to be continuous ev-
erywhere (including element boundaries).

This onerous resolution requirement may be bypassed
by not representing the resistivity on the C1 finite ele-
ments at all. Specifically, the resistivity and mass density
are taken to be an explicit (discontinuous) functions of
the poloidal flux ψ. Thus, whenever the resistivity or
density needs to be evaluated, it suffices simply to eval-
uate the poloidal flux at that location. The poloidal flux
is typically a smooth, slowly varying quantity across the
plasma-vacuum boundary, and does not require high res-
olution to resolve there (though high resolution is typ-
ically needed in the edge for other reasons, such as to
resolve the pressure pedestal and eigenfunctions). Specif-
ically, we choose the following profile for the resistivity:

ηideal(~x) =

{

ηp if ~x is in the plasma region

ηv otherwise
(5)

and mass density:

ρideal(~x) =

{

ρp if ~x is in the plasma region

ρv otherwise.
(6)

The “plasma region” is defined as the simply-connected
region containing the magnetic axis for which the poloidal
flux ψ ∈ [ψ0, ψi), where ψ = ψ0 at the magnetic axis, and
ψ = ψi at the plasma-vacuum interface. (The private-
flux region of a diverted plasma is not within the plasma
region.) Typically ψi = ψb.

In practice, when carrying out numerical integrations,
η and ρ can be evaluated according to equation (5)
at each sampling point in the numerical integration
quadrature (M3D-C1 generally uses a 25-point Gaussian
quadrature), and therefore η and ρ may be discontin-
uous even within an element domain. Thus, one need
not align the elements with the plasma-vacuum bound-
ary for this method to be effective. It should be em-
phasized that this technique is made practical by M3D-
C1’s use of the flux representation of the magnetic field

( ~B = ∇ψ × ∇ϕ + I∇ϕ, with ϕ the toroidal angle and
I = RBϕ), whereby the value of ψ is known trivially at
any point.

One potential issue with the above representation of
resistivity and density is that the derivatives of ηideal

and ρideal are undefined at the plasma-vacuum interface.
This issue is obviated by the use of integrations-by-parts
to move derivatives off of η and and ρ in the weak-form
equations (i.e. the weak-derivatives are used).

Recent NIMROD calculations of growth rates for the
equilibria similar to the cbm18 equilibrium have found
that ideal behavior is adequately recovered when ρv/ρp

<∼

FIG. 4. The fractional difference in the growth rate of the
n = 10 eigenmode from the case where ρv/ρp = 10−2 and
ηv = 10−2 as ρv/ρp or ηv is varied.

10−2, Sp
>∼ 108 and Sv

<∼ 103, where Sp and Sv are the
Lundquist numbers in the plasma and outer regions, re-
spectively.14 Calculations with M3D-C1 essentially con-
cur with this assessment, although we find the dbm18

and Meudas1 equilibria to be somewhat more sensitive
to the “vacuum” parameters than the cbm18 equilibrium
(see figure 4). The growth rate is seen to decrease with
ηv, in accordance with the well-known argument based
on energy principle considerations that treating the outer
region as a resistive plasma must yield lower growth rates
than using an ideal vacuum model.33 Once ηv approaches
the “ideal” value of approximately 10−8, the growth rate
becomes insensitive to further reductions in ηv; this cor-
responds to the limit where the outer region is treated as
an ideal plasma. (The units of η here are such that η is
the inverse Lundquist number based on a one Tesla field
and one meter scale-length.) The Meudas1 case is par-
ticularly sensitive to the outer region resistivity, with the
growth rate dropping by half as the outer region transi-
tions from a vacuum to an ideal plasma.

The “ideal” results presented below have been ob-
tained with ηp = 10−8 and ηv = 10−2 and ρv/ρp = 10−2,
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FIG. 5. The normalized growth rate versus toroidal mode
number in the ideal limit, for the cbm18, dbm18, and Meu-

das1 equilibria.

unless otherwise specified. All other explicit dissipative
terms—viscosity, particle and thermal diffusivity, hyper-
diffusivities, etc.—are zero.

Growth rates are calculated both using an adiabatic
equation of state (Γ = 5/3) and an equation of state in
which the contribution of compressional displacement is
neglected (Γ = 0), where Γ is the ratio of specific heats.

The “compressionless” equation of state is the preferred
model in ELITE; the adiabatic equation of state is also
implemented in ELITE, but to a lower order in the in-
verse mode number expansion than other terms, and is
therefore expected to be less accurate at low toroidal
mode numbers n.20

A comparison of the growth rates for each equilibrium
as calculated by ELITE, GATO, and M3D-C1 are shown
in figure 5. The growth rates are normalized to the char-
acteristic Alfvén frequency:

ωA =
B0

R0

√

4πρp

, (7)

where B0 is the magnetic field strength at the magnetic
axis, R0 is the major radius of the magnetic axis and ρp is
the mass density at the top of the pedestal. The normal
velocity (un = ~u · ∇ψ/|∇ψ|) of the n = 10 eigenmode
for each equilibrium is shown in figures 6 and 7. There is
generally good agreement among the different codes. The
largest disagreement is found in the low-n growth rates of
the Meudas1 case. The boundary conditions are a factor
in this disagreement; ELITE assumes an infinite vacuum,
whereas M3D-C1 has a perfectly conducting wall that
runs close to the plasma-vacuum interface along much
of the plasma. It is expected that such a conducting
wall should be stabilizing, especially to lower-n modes
for which the eigenfunction tends to extend further into
the outer region. However, the difference in boundary
conditions is probably not enough to fully explain the
growth rate discrepancy; expanding the wall outward by
8% yields only a few percent change in the growth rate of
the n = 10 eigenmode (see figure 9). Unfortunately it is
not possible to move the conducting wall more than this
due to the close proximity of various poloidal field coils
in the Meudas1 case. M3D-C1 does not presently have
the capability to model a resistive or insulating wall.

Another potential source of disagreement is that the
position of the plasma-vacuum interface used in ELITE
(and similar codes) may strongly affect the growth rate.
This is discussed in more detail in the following section.
For the Meudas1case, the ELITE results have been com-
puted with the plasma-vacuum interface at the 99.8%
flux surface, which is converged to within a few percent.
For the cbm18 and dbm18 cases, which are not diverted,
this is not an issue.

The remaining disagreement between the codes in the
Meudas1 case, as well as the smaller disagreements in
the dbm18 equilibrium are larger than can be accounted
for by discretization errors alone. It has been shown that
the growth rates are highly sensitive to the initial equi-
librium, with slight differences in the method of mapping
the cbm18 equilibrium (by far the easiest to resolve of
the three equilibria presented here) onto the computa-
tional domain resulting in changes in the growth rate on
the order of 10%.14

Finally, it should be noted that calculations of the
ideal growth rate in the Meudas1 case have also been
performed with MARG2D and ILSA. With the plasma-
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FIG. 6. The n = 10 eigenfunction of the normal velocity for the three benchmark equilibria, as calculated by M3D-C1. The
thick curve marks the boundary of the computational domain (which is treated as a perfectly conducting wall). The thin curve
represents the foot of the pedestal, which (in these cases) is the position of the vacuum-plasma interface. In the Meudas1

equilibrium, the foot of the pedestal coincides with the separatrix.

FIG. 7. The n = 7 eigenfunction of the normal velocity for
the Meudas1 equilibrium. Only regions having un > 0 are
highlighted. The outermost surface plotted is Ψ = 1.002.

vacuum interface at the same position as ELITE’s (in this
case, at the 99.4% flux surface) MARG2D found growth
rates within a few percent of ELITE, whereas ILSA pro-
duced growth rates roughly 10% lower.27. ELITE and
MARG2D also agree within a 5% percent for cutoffs at
99.6% and 99.8%.

C. The Effect of Moving the Plasma-Vacuum Interface

Due to the singularity arising from the x-point of di-
verted magnetic geometries, many ideal MHD codes, in-
cluding ELITE, typically place the plasma-vacuum in-

terface just inside the magnetic separatrix of diverted
equilibria, and thus do not include the x-point itself
within the calculation of the plasma perturbed energy.
For peeling-ballooning modes the eigenfunction is not en-
tirely localized to the closed field line region but may
substantially cross the separatrix. This raises the con-
cern that the growth rate may be sensitive to the posi-
tion of the plasma-vacuum interface, and therefore it is
of interest to study the limiting behavior as the plasma-
vacuum interface approaches or crosses the separatrix.
This issue has been addressed previously both compu-
tationally9,34,35 and analytically,36 with the conclusion
that low-n pure peeling modes, when driven by current
at the cutoff, are strongly stabilized in the presence of
an x-point, while the peeling-ballooning modes typically
found in experimental equilibria are more modestly af-
fected (the growth rate for a particular equilibrium can
be significantly affected but the stability threshold gen-
erally only changes by a few percent). Here we quantify
the sensitivity of n = 10 peeling-ballooning mode growth
rates as the plasma-vacuum interface is moved to include
or exclude the separatrix.

M3D-C1 uses cylindrical coordinates and is therefore
able to include poloidal field nulls in the computational
domain without difficulty. In order to assess the sensi-
tivity of the growth rate to the position of the plasma-
vacuum interface, a series of calculations have been per-
formed with M3D-C1 for each equilibrium, with the
plasma-vacuum interface displaced from its nominal posi-
tion at the foot of the pedestal. Specifically, the position
of the density and resistivity transition is moved inward
or outward while the pressure and magnetic field profiles
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FIG. 8. The n = 10 eigenfunction of the normal velocity for the Meudas1 equilibrium near the active x-point. Left : Step-
function plasma density and resistivity (see equations (5) and (6)); Right : nonuniform, continuous plasma density and Spitzer
resistivity (see equations (9) and (10)).

FIG. 9. The growth rate of the n = 10 eigenmode of the
Meudas1 case with the conducting wall in the standard posi-
tion (a = 1) and expanded outward by 8% (a = 1.08), versus
the resistivity in the outer region ηv.

are unchanged (i.e. ψi is changed but ψb is not). The
distance of this displacement is measured here in terms
of the offset in the normalized flux:

δΨ =
ψi − ψb

ψb − ψ0
(8)

relative to the distance from the foot of the pedestal (Ψ =
1) to the center of the pedestal (Ψ = Ψc). The center of
the pedestal is defined as the magnetic surface for which
〈α〉 is maximum.

The results of these calculations are shown in figure 10.
It is evident from these results that the growth rate is
sensitive to the position of the plasma-vacuum interface,
particularly in the diverted equilibrium. In the Meudas1

FIG. 10. The growth rate of the n = 10 eigenmode versus the
plasma-vacuum interface offset δΨ. Growth rates are normal-
ized to the growth rate at zero offset; the offsets are normal-
ized to distance from the foot of the pedestal to the center
of the pedestal in the relevant equilibrium. A negative offset
indicates an inward shift of the plasma-vacuum interface.

case, the growth rate is increased by approximately 30%
when the cutoff is moved from the separatrix to the 99.7%
flux surface. Growth rates are found to be be much more
sensitive to inward shifts than to outward shifts.

In the results figure 10, both the density transition
and the resistivity transition have been moved together.
Other calculations in which the density transition is held
fixed while the resistivity transition is moved show that
the sensitivity of the diverted case is due primarily to
the position of the density profile. For example, a shift
of both profiles by δΨ/(1 − Ψc) ≈ −10% in the Meu-

das1 case roughly doubles the growth rate of the n = 10
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eigenmode, whereas shifting only the resistivity transi-
tion yields just a 5% increase, indicating that much of
the growth rate change is due to a change in the effective
inertia of the plasma.

D. The Effect of Realistic Density and Resistivity Profiles

The fidelity of edge stability studies can be improved
by treating both the density and resistivity profiles as
continuously varying, in both the plasma and outer re-
gion. In previous ideal MHD studies of experimental dis-
charges, realistic density profiles are generally used in the
plasma region (unlike the step function density profiles
used in the benchmarks above), but the density in the
scrape-off-layer region (and outside the cutoff, if a cutoff
inside the separatrix is used) is approximated as zero by
the vacuum model. While the density in this region is
typically small, the contribution of its inertia to growth
rates may still be significant.

Of course, ideal MHD codes do not include a nonuni-
form resistivity profile, but have instead an abrupt tran-
sition from an ideally conducting plasma to a zero con-
ductivity vacuum region. A series of calculations have
been done using M3D-C1 to gauge the effect of includ-
ing nonuniform density and resistivity profiles within the
plasma. For these calculations, the mass density profile
is chosen such that

ρ = ρ0p
x, (9)

with 0 < x < 1. Thus Te + Ti = mp1−x/ρ0. Because
this density profile is continuous, the density field is rep-
resented on the finite element basis, as opposed to the
explicit functional dependence on ψ used in the previous
section. For the cbm18 case, the factor ρ0 is chosen so
that the density at the top of the pedestal is the same as
in the discontinuous-density case (ρp), x is chosen so that
the density at the foot of the pedestal is 100 times smaller
than at the top of the pedestal (to facilitate comparison
with the results obtained with the step-function profile),
and the pressure in the outer region is such that the tem-
perature there is roughly 41 eV. In the dbm18 case, den-
sity is treated the same way, but the edge temperature
is approximately 62 eV. In the Meudas1 case, the den-
sity in the scrape-off layer is 20 times less than at the
top of the pedestal. (The plasma-vacuum density ratio
is smaller in the Meudas1 case in order to prevent over-
shoot in the finite element projection that result in neg-
ative temperatures.) Two different temperature profiles
are considered with the Meudas1 equilibrium: one with
Te = 38 eV in the outer region and one with Te = 243
eV. The temperature is changed by adjusting the outer
region pressure while holding the density at the top and
bottom of the pedestal constant. Because the pressure in
the outer region is so small, the pressure gradient does
not change appreciably anywhere as the temperature is
changed.

FIG. 11. The resistivity at Z = 0 in the Meudas1 equilibrium
for three cases: ηideal; Spitzer resistivity with Te = 38 eV in
the outer region; and Spitzer resistivity with Te = 243 eV
in the outer region. The foot of the pedestal is at roughly
R = 3.84 here.

One set of calculations is done in which resistivity is
taken to have the same discontinuous form as used in the
previous sections; in another set the resistivity is taken
to have the Spitzer value, approximately

ηSpitzer = 2 × 10−4√ρpT
−3/2
e , (10)

in the same normalized units used before, with Te in eV
and ρp in units of 1013m cm−3 (the dependence on ρp

arises from the normalization), and where we have as-
sumed the Coulomb logarithm ln Λ ≈ 17. In all cases
considered here, Te = Ti. It should be noted that in
all cases the Spitzer resistivity is actually lower through
the core of the plasma than in the “ideal” case (as men-
tioned earlier, the growth rates are insensitive to reduc-
tions in the resistivity below roughly 10−8). In the edge
the Spitzer resistivity becomes somewhat larger than in
the ideal case, but in the outer region the Spitzer resis-
tivity is far smaller than in the ideal case. The “ideal”
resistivity profile is compared to the Spitzer resistivity
for various outer region temperatures in figure 11.

The effect of using the continuously varying density
and resistivity profiles is illustrated in figure 12. Re-
placing the uniform (within the plasma) density profile
[used in the ELITE and M3D-C1 (Ideal) curves] with
the nonuniform density profile results in a significant in-
crease in the growth rate. The factor by which the growth
rate increases is roughly the square-root of the factor by
which the density has been reduced at the center of the
pedestal. This can be understood simply by noting that
occurrences of density in the ideal MHD equations may
be eliminated by scaling time by the Alfvén time and
velocity by the Alfvén velocity, which implies that ideal
frequencies must scale as ∼ 1/

√
ρeff , where ρeff is an

effective mass density seen by the eigenmode. Equiva-
lently, the eigenvalues of the ideal MHD operator (which
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FIG. 12. Growth rates are plotted versus toroidal mode num-
ber using ηideal and ρideal (Ideal); ηideal and a nonuniform
ρ profile (Nonuniform ρ); and ηSpitzer and a nonuniform ρ
profile (Nonuniform ρ, η) for each equilibrium.

does not involve density) are of the form ρeffω
2, which

leads to the same conclusion. Thus, for these modes, the
effect of having a continuously varying mass density in
the edge is to change the effective inertia of the plasma
such that ρeff is approximately the mass density at the
center of the pedestal.

In the cbm18 case, using ηSpitzer instead of ηideal re-
sults only in a very small decrease in the growth rates of
the lowest-nmodes, and has practically no effect on high-
n modes. In the Meudas1 case, however, using ηSpitzer

with Te = 38 eV in the outer region has a significant
stabilizing effect at all n considered here. The observed
stabilization is consistent with the results shown in fig-
ures 4 and 9, in which step functions for ρideal and ηideal

are used, but ηv is varied. Evidently, using the Spitzer
resistivity profile has an effect similar to having an instan-
taneous resistivity transition at the foot of the pedestal
from an “ideal” value inside the plasma (η <∼ 10−8) to
the Spitzer value in the outer region. Assuming a resis-
tive outer region at a realistic temperature, the growth
rates are actually closer to those obtained assuming a
ideal, force-free plasma in the outer region than to those
obtained using an ideal vacuum model for this case.

IV. CONCLUSIONS

Growth rates of peeling-ballooning modes calculated
with M3D-C1 have been shown generally to agree well
with those calculated by ideal MHD codes in the ideal
limit. This agreement should lend confidence that future
non-ideal peeling-ballooning calculations with M3D-C1

may be compared meaningfully with the results of ideal
codes. Boundary conditions are observed to have a small
effect on calculated growth rates. The major sources of
discrepancies among the codes in the ideal benchmark
cases are likely the treatment of the boundary conditions,
and small differences in the initial equilibria due to map-
ping differences.

It has been shown here that the growth rate of ideal
peeling-ballooning modes in diverted equilibria is sen-
sitive to the position of the plasma-vacuum boundary;
specifically, the location of the density transition. The
diverted equilibrium is in fact much more sensitive than
the limited equilibria, even after accounting for the vari-
ous pedestal widths of the equilibria. This may be due in
part to the fact that excluding even a small region of flux-
space excludes a large region of physical space near the
x-point in diverted equilibria. Given this sensitivity, an
ideal calculation extending only to the 99% flux surface
may significantly overestimate growth rates in diverted
equilibria. In the Meudas1 case, moving the cutoff in-
ward from the separatrix to the 99.7% flux surface leads
to a 30% increase in the growth rate, when a step function
density profile is used. Of course, this sensitivity is ulti-
mately an artifact of the strongly discontinuous density
profile used for this benchmark study, and is mitigated
by the use of more realistic density profiles. Studies with
ELITE using experimentally relevant profiles find that
the stability boundary is typically converged to within a
few percent as long as the cutoff is beyond the 99.4% flux
surface.9.

With continuously varying density profiles, it is found
that the ratio of the growth rate to the Alfvén frequency



10

at the center of the pedestal remains roughly similar to
the uniform-density case. This means that the actual
growth rate will be larger than the growth rate calculated
using a uniform density equal to ρp by roughly a factor

of
√

2 (assuming the density at the center of the pedestal
is half that at the top). This dependence of the growth
rate on the density profile can be relevant, for example if
a model of diamagnetic stabilization based on the ratio
γ/ω∗ is used to determine the stability criterion.

To varying extents for each equilibrium, lowering the
resistivity in the outer region to realistic values is ob-
served to reduce the peeling-ballooning growth rates.
This general trend is expected, but has not previously
been quantified. For the diverted equilibrium, this re-
duction is quite significant even at intermediate toroidal
mode numbers (n ∼ 20). It is found that growth rates
using a resistive model of the outer region more closely
match those obtained using an ideal force-free plasma
model of the outer region than a vacuum model when
ηv <∼ 10−5. This corresponds to an electron temperature
in the outer region of roughly 10 eV, above which the
force-free model is preferable. In DIII-D, the scrape-off
layer temperature in ELMing discharges is typically 50
eV.37

Future work will focus on quantifying the importance
of other non-ideal effects on linear ELM stability, includ-
ing anisotropic viscosity and thermal conductivity, gyro-
viscosity, and two-fluid effects.
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