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The tress tensor expresses a linear relationship between the forces acting on a fluid 

and the applied rate of strain.  It is completely analogous to Hooke’s law for an elastic 
solid.  In a magnetized plasma the stress tensor can be into three orthogonal components 
as 

    Π = bb ⋅ Π + b × I ⋅ Π + I − bb( )⋅ Π    ,  

     = Π|| + Π^ + Π⊥    . (1) 

A kinetic theory for a collisional plasma shows that the parallel (||) and perpendicular (⊥) 
components depend on the collision frequency, and are dissipative.  However, the 
traceless “cross” (^) component (called the gyro-viscous stress) is independent of 
collisions and is not dissipative.  A generalized Hooke’s law for this component of the 
stress can be written as 

      
Π^ =

η3
2

b ×W ⋅ I + 3bb( )+ transpose[    ,]  (2) 

where  

      
W = ∇Vi + ∇Vi

T −
2
3

I∇ ⋅ Vi    ,  (3) 

is the rate of strain tensor, and  

    
η3 =

nTi
2Ω

   , (4) 

where      is the ion gyro-frequency.  Inclusion of this form of the gyro-viscosity 
in the fluid plasma (extended MHD) equations is known to introduce dispersive 
modifications to the MHD wave spectrum.  These require special attention in a numerical 
solution of these equations. 

Ω = eB / mi

Subsequent theoretical investigations have suggested that Equation (2) does not 
contain the correct plasma response to lowest order in the ratio of the ion gyro-radius, 
    ρi = Vth / Ω, to the macroscopic scale length, and that the gyro-viscous stress should 
contain an additional term of the form 

      
Π^q =

5
2Ω

b ×Wq ⋅ I + 3bb( )+ transpose[    ,]  (5) 

where 



      
Wq = ∇qi + ∇qi

T −
2
3

I∇ ⋅ qi    , (6) 

and      is the ion heat flow.  We call Equation (5) the heat stress.  Any closure of the fluid 
equations that relates      to the (ion) temperature  introduces the possibility of coupling 
between the heat flow stress in the momentum equation and the compressible (    

qi
qi  T

~ ∇ ⋅ V) 
term in the energy equation to produce modifications of the sound wave dispersion 
relation.  If these modifications are dispersive (   ω ~ k2) they may introduce further 
complications for numerical algorithms. 

In this note we examine the modifications to the sound wave dispersion relation by 
the heat stress for a homogeneous plasma with a uniform magnetic field.  Since we 
anticipate that the important coupling is between the momentum and  (adiabatic) energy 
equations, only the heat stress contribution to the gyro-viscous stress is considered.  We 
also assume electrostatic perturbations, so there is no need to invoke Ohm’s law and 
Ampere’s law, and we use the Braginskii collisional closure for the heat flow.  This 
model contains the essential result.  In particular, we find that the perpendicular sound 

wave indeed has a dispersive modification of order , but the parallel sound wave 
is unaffected.  Further, the perpendicular propagation is only affected by the “cross” (or 
gyro) component of the heat flow.  The dissipative parallel and perpendicular 
components have no effect on the waves when the fluid is adiabatic.  Further, the wave 
propagation is unaffected by the electrons (unless one also includes the electron thermal 
stress in the model), since it is the ion heat flow that enters Equation (6).  Thus, more 
complicated (and accurate) parallel kinetic closures for the electrons can be implemented 
without concern for their affect on the overall dispersion relation.  Since the ion “cross” 
thermal conductivity is smaller than the electron value by a factor of the mass ratio, the 
issue can be avoided entirely be excluding the ion “cross” conduction from the model.  
Further, since the indicated modifications of the momentum equation seem to make no 
contribution to the dynamics (e.g., sound waves), perhaps the heat stress can ignored 
completely. 

  ρik⊥( )2

The detailed calculation is straightforward.  The minimal set of relevant equations is 

      
ρ0

∂V
∂t

= −∇p − ∇ ⋅ Π^q    ,  (7) 

      
∂p
∂t

= −γp0∇ ⋅ V    , (8) 

where      is given by Equations (5) and (6), and the heat flow is taken to be Π^q

      q = −κ||∇||T −κ⊥∇⊥T −κ^b × ∇⊥T    . (9) 

For a uniform plasma with a constant magnetic field in the z-direction, Equations (7-9) 
become, after assuming     exp(iωt + ik⊥ y + ik||z) dependence, 

    
iωρ0Vx =

ik3

5Ωn0
F1(θ ) p    ,  (10) 



    
iωρ0Vy = −ik sinθ −

ik3

5Ωn0
F2(θ )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ p    ,  (11) 

    
iωρ0Vz = −ik cosθ +

ik3

5Ωn0
F3(θ )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ p    ,  (12) 

    iωp = −iγp0k Vy sinθ + Vz cosθ(    ,)

)

 (13) 

where 

    
F1(θ) = 2sin2 θ + cos2 θ( )κ⊥ sinθ −κ^ cosθ( )−κ|| cos2 θ sinθ    ,  (14) 

    
F2(θ) = κ^ sinθ 2sin2 θ + cos2 θ(    ,  (15) 

    F3(θ) = κ^ sin2 θ cosθ    , (16) 

and we have defined     k|| = k cosθ  and   k⊥ = k sinθ . 

Setting the determinant of Equations (10-13) to zero yields the dispersion relation 

    
ω2 = Cs

2k2 1+
κ^

5n0Ω
f (θ )k2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥    , (17) 

where     Cs
2 = γp0 / ρ0  is the sound speed.  The angular dependence is given by 

    
f (θ) =

1
2

sinθ 2sin2 θ + cos2 θ − sinθ cosθ(    ,)  (18) 

which has the property that     f (0) = 0 and   f (π / 2) = 1. 

Equation (17) exhibits a dispersive modification to the sound wave for oblique to 
normal propagation   (0 < θ ≤ π / 2).  However, the dispersion of the parallel sound wave 
  (θ = 0) is unaffected.  Note that the dispersive modification depends only on the “cross” 
component of the ion thermal conductivity.  Using the expression     κ^ = 5n0T / 2miΩ, 
Equation (17) can be written as 

    
ω2 = Cs

2k2 1+ f (θ) ρik( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥    , (19) 

which exhibits the FLR nature of the correction explicitly. 
We remark that the expressions for the heat flow and coefficients of thermal 

conductivity appearing above refer to the ions.  Only the ion “cross” thermal conductivity 
need be considered.  Since this is smaller than the electron thermal conductivity be a 
factor of the mass ratio, perhaps this effect can be neglected.  More sophisticated non-
local closure expressions for the parallel electron heat flow will not affect the propagation 
of sound waves.   

 


