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A conforming representation composed of two-dimensional finite elements and finite Fourier 

series is applied to three-dimensional nonlinear non-ideal magnetohydrodynamics using a semi-

implicit time-advance.  The self- adjoint semi- implicit operator and variational approach to 

spatial discretization are synergistic and enable simulation in the extremely stiff conditions found 

in high temperature plasmas without sacrificing the geometric flexibility needed for modeling 

laboratory experiments.  Growth rates for resistive tearing modes with experimentally relevant 

Lundquist number are computed accurately with time-steps that are large with respect to the 

global Alfvén time and moderate spatial resolution when the finite elements have basis functions 

of polynomial degree (p) two or larger.  An error diffusion method controls the generation of 

magnetic divergence error.  Convergence studies show that this approach is effective for 

continuous basis functions with p=2, where the number of test functions for the divergence 

control terms is less than the number of degrees of freedom in the expansion for vector fields.  

Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity 

( ⊥χχ|| ) is computed accurately with p=3 without mesh alignment.  A simulation of tearing-

mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the 

algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical 

anisotropic thermal conduction in three-dimensional magnetic topologies. 

 

KEYWORDS:  magnetohydrodynamic simulation, finite element, semi-implicit, anisotropic 

diffusion 
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1. INTRODUCTION 

High temperature magnetized plasmas are characterized by extremely anisotropic properties 

relative to the direction of the magnetic field.  Perpendicular motions of charged particles are 

constrained by the Lorentz force, while relatively unrestrained parallel motions lead to rapid 

transport along magnetic field lines.  The orientation and distribution of fluid- like motions of the 

electrically conducting plasma then determine the degree of restoring force arising from the 

bending and compression of magnetic flux tubes.  When collective motions are able to avoid 

these restoring forces while releasing available free energy, magnetohydrodynamic (MHD) 

instability results.  As an unstable perturbation grows to finite amplitude, it may induce a 

nonlinear evolution of the system that includes significant (and sometimes catastrophic) changes 

in thermal energy and particle confinement.  The behavior is often complex, so that analysis 

must rely on simulation, but the large anisotropies relative to the distorted magnetic field present 

challenging conditions for numerical methods.  For example, numerical truncation errors 

associated with rapid parallel thermal conduction produce artificial heat transport that leads to 

qualitative errors in the simulated energy confinement when using low-order representations. 

The anisotropies also lead to a wide range of time-scales for different physical effects.  For 

typical conditions in magnetically confined plasmas, parallel thermal conduction is the fastest 

process in the system.  Alfvén-wave propagation occurs on a longer time-scale, followed by 

sound-wave propagation.  Perpendicular thermal conduction and particle diffusion occur on 

longer time-scales, and global magnetic field diffusion (from nonzero resistivity) is the slowest 

process.  Topology-changing magnetic reconnection occurs on a hybrid time-scale between 

Alfvénic propagation and global resistive diffusion, and the associated subsonic flows are nearly 

incompressible, so numerical simulation of this behavior must deal with extreme stiffness 
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resulting from relatively fast wave propagation and parallel thermal conduction.  Simulating the 

behavior of the system is therefore related to various aspects of the numerical simulation of 

electromagnetics, incompressible fluid dynamics, convective heat transfer, and linear ideal 

MHD. 

Numerical resolution of magnetohydrodynamic anisotropy leading to singular behavior in 

ideal conditions has been achieved in linear computations by using specialized low-order 

discretization methods.  These methods require solving the displacement vector in covariant and 

contravariant components with respect to a fixed magnetic- flux coordinate system, aligning the 

numerical mesh with the equilibrium magnetic field, and using different finite element basis 

functions in the parallel and perpendicular directions [1, 2].  For nonlinear simulation, this 

approach is less compelling.  Nonlinear evolution often forms regions with distinct magnetic 

topology, such as helical islands or regions of magnetic stochasticity embedded in nested flux 

surfaces.  Either occurrence would present formidable challenges for 1) an adaptive meshing 

algorithm to preserve alignment with the complicated magnetic field and 2) an arrangement of 

particular basis functions to match the adaptive mesh.  Furthermore, a basis function expansion 

tailored to a particular set of equations may not be suitable for other physical models.  For 

example, discontinuous finite element representations of velocity field components cannot be 

applied to a system with viscous dissipation without resorting to non-conforming or more 

complicated mixed approximations.  Since closure relations for fluid models remains an active 

area of research in plasma theory, a specialized discretization will have limited usefulness for a 

simulation code that is intended to have flexibility in the equations that it solves. 

An alternative is to use a numerical representation that has a high rate of spatial convergence.  

While a number of high-order approximations are possible for simple configurations, the ability 
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to represent a realistic geometry is important for analyzing laboratory data.  High-order finite 

difference methods therefore have limited applicability, and the nonlinear character of high-order 

finite volume methods [3] (designed for accuracy with discontinuous solutions) is not suited for 

conditions where stiff linear behavior and resolution of narrow dissipation layers is important.  

The finite element method provides a better approach for nonlinear fusion MHD, where 

dissipation terms ensure smoothness with sufficient resolution.  The convergence rate realized by 

the finite element method is then controlled by the degree (p) of the polynomial basis functions, 

relatively independent of geometry and mesh spacing irregularities.  In addition, a general finite 

element implementation can achieve convergence by increasing p with a fixed mesh [4], which 

constitutes a spectral method. 

Applying the finite element method to time-dependent systems leads to separate variational 

problems for each equation in a marching algorithm if the implicit terms are based on self-

adjoint differential operators.  Here, standard analysis can be used to estimate convergence with 

respect to mesh spacing when the representation satisfies two conditions:  First, the space of 

piecewise polynomials (Sh) of degree p must be composed of admissible functions, which in our 

application means that the functional is finite for all finite-valued functions in Sh and that Sh only 

includes functions that satisfy the Dirichlet boundary conditions.  Second, the explicit terms in 

the marching algorithm, i.e. the ‘data’ for each variational problem, must remain square-

integrable functions throughout the evolution.  (Chapter 1 of Ref. [5] provides a concise 

mathematical background.)  Given these conditions, the analysis tells us that the finite element 

solution ( u ) to a variational problem is the function in Sh with the least ‘strain energy’ error [5], 

i.e. 
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( ) ( ) hSvvuvuauuuua ∈−−≤−−  allfor  ,,   , (1) 

 

where u is the best solution among all admissible functions.  Then, knowing that the finite 

element solution is a better approximation in terms of the strain energy than the interpolate 

function, which is also in Sh, we eventually arrive at relations for convergence rates [5],  

 

1p
1p

00 +
+≤− uhKuu   and (2) 

1p
p

11 +≤− uhKuu   , (3) 

 

where h characterizes the possibly irregular mesh spacing, |u|s is the norm of the s-th derivative 

of u, and K0 and K1 are independent of h.  [The estimates (2-3) are for the relevant special case 

of second-order partial differential equations.]  For a time-advance that solves for different fields 

sequentially, there is a unique strain energy for each equation, and the set of minimization 

problems is solved at each time-step. 

While the finite element representation allows high-order accuracy without restricting 

geometry, it introduces other challenges.  Besides implementation complications, it is well 

known from incompressible fluid modeling that continuous finite element representations of 

vector components cannot reproduce a divergence constraint exactly.  Furthermore, ensuring 

convergence to a divergence-free space requires special attention.  For plasma modeling, this 

issue arises with the zero-magnetic-monopole constraint and with nearly divergence-free velocity 

distributions associated with many unstable MHD modes.  A straightforward approach for 

approximating the magnetic divergence constraint is to add the diffusive term B⋅∇∇divbκ  to 
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Faraday’s law [6-8].  This  leads to a method that is related to divergence cleaning techniques for 

finite difference and finite volume methods [9] and to penalty function methods for finite 

elements [10]. 

Here, we report on this application of the finite element method to nonlinear non- ideal MHD, 

and its implementation in the NIMROD code (Non-Ideal Magnetohydrodynamics with Rotation, 

Open Discussion) [7].  The objective of the NIMROD project [http://nimrodteam.org] is to 

achieve accurate and flexible modeling of nonlinear electromagnetic activity in computational 

domains that are realistic for a variety of laboratory plasmas.  Unlike most previous efforts for 

nonlinear modeling of high temperature plasmas [11-14], we have avoided spatial 

representations that restrict the geometry in the poloidal domain.  The present NIMROD 

implementation has the parameter p selected at run-time, which is more general than either the 

finite element implementation reported in Ref. [15] or the earlier NIMROD implementation [7], 

which used linear and bilinear elements only.  This feature has proven useful for exploring the 

performance of different basis functions in actual applications, and our findings confirm that 

using p>1 is essential for modeling anisotropies and for satisfying the magnetic divergence 

constraint.  We have restricted our attention to periodic configurations with a two-dimensional 

boundary, so the finite Fourier series representation with pseudospectral computations of 

nonlinear terms [16] is applied. 

The separation of time-scales in high temperature plasmas is manifest mathematically as 

stiffness in the non-ideal MHD model, and this is an equally important consideration for 

numerical simulation.  The dominant part of the stiffness can be described through the linear 

properties of the system at any given time, since propagating shocks do not occur on these slow 

time-scales.  The stiffness makes explicit methods impractical, but semi- implicit methods [17, 
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18] are well suited for these conditions.  The semi-implicit operator considered here is based on 

the linear ideal MHD energy integral, as recommended in Ref. [13], but the symmetric 

component of the solution’s Fourier expansion is incorporated into the equilibrium fields.  

(Geometrically, we use “symmetry” with respect to the periodic coordinate, e.g. the toroidal 

direction for toroidal geometries, which is represented by the finite Fourier series.  However, 

“symmetry” is also used in the mathematical context of symmetric matrices.)  In addition, the 

Laplacian operator used for stabilizing nonlinear pressures has a dynamic coefficient that 

depends on the nonsymmetric part of the solution.  This approach makes the algorithm suitable 

for simulations where the fields evolve significantly from their initial equilibrium configuration, 

while retaining the accuracy reported in Ref. [13].  Furthermore, since each advance in the 

marching algorithm has a self-adjoint operator for its implicit terms, and positive eigenvalues can 

be ensured, the requirements for a variational approach to spatial discretization are met.  In many 

cases, there is no implicit dependence among Fourier components, so the resulting algebraic 

systems have sparse matrices.  For equations that have implicit coupling in all three directions, 

the Fourier representation leads to an algebraic system that includes convolutions among Fourier 

components. 

The NIMROD code has been written for parallel computation on distributed-memory 

computers with communication routines from the Message Passing Interface (MPI) library 

(http://www.mpi- forum.org).  Standard mesh decomposition techniques with point-to-point 

communication work well for the finite element representation of the poloidal plane, where 

overlap of basis functions is local.  Coupling in the periodic direction occurs through Fast 

Fourier Transforms (FFTs) and algebraic operations on a uniform grid over this coordinate.  

Here, swapping from Fourier-based decomposition to spatially based decomposition via 
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collective communication is used to maintain scalability.  Computationally, the most demanding 

part of the algorithm is the solution of the linear systems.  A recent change in the NIMROD code 

is the use of the parallel, distributed memory version of the SuperLU software library 

(http://acts.nersc.gov/superlu/) to apply sparse direct-solve methods to the systems that do not 

have Fourier convolutions.  For the systems with coupling among Fourier components, 

NIMROD has a matrix- free conjugate gradient solve that calls SuperLU routines to invert sparse 

approximations of the complete matrices as a preconditioning step. 

The organization for the remainder of this article is as follows.  Section 2 describes the 

magnetofluid equations solved by NIMROD, and Section 3 presents the discretization techniques 

that have been applied.  In Section 4, we use a resistive linear MHD benchmark to show 

convergence properties in stiff conditions and to demonstrate performance with respect to the 

divergence constraint.  We also present NIMROD results on a quantitative test of anisotropic 

thermal conduction.  A sample nonlinear simulation that brings together MHD stiffness and 

anisotropic energy transport is presented in Section 5.  In Section 6, we further discuss the 

properties of the algorithm that are observed in the test results and make comparisons with ideal 

MHD eigenvalue computation and incompressible fluid modeling.  Conclusions are given in 

Section 7.  The Appendix describes our implementation of regularity conditions for simply 

connected (topologically cylindrical) configurations. 

 

2. EQUATIONS 

Resistive MHD is the simplest model capable of reproducing global electromagnetic behavior 

observed in many laboratory and natural plasmas.  For long time-scales, where important 

nonlinear evolution occurs, it is often necessary to include diffusion and conduction terms, since 
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transport processes act on similar time-scales.  The non- ideal model considered in this paper is 

resistive MHD with anisotropic thermal conduction, kinematic viscous dissipation, particle 

density diffusion, and the numerical diffusion of magnetic divergence error.  Separating terms 

that represent a steady solution (denoted by the “ss” subscript), this non- ideal MHD model is 
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where E is the electric field, B is the magnetic induction, V is the particle flow velocity, q is the 

heat flux vector, Q is a the heat source density, and γ is the ratio of specific heats.  The units are 

MKS, except that the Boltzmann constant has been absorbed into temperature.  The particle 

number density n and mass density ρ are related through the mass per ion (mi), and total pressure 

and temperature follow the ideal gas relation, nTp 2= , assuming quasineutrality ( nnn ie =≅ ) 

and rapid thermal equilibration among ions and electrons.  Equations (4a-f) represent the 

modified Faraday’s law, the resistive MHD Ohm’s law, the low- frequency limit of Ampere’s 

law, particle conservation, flow velocity evolution, and temperature evolution, respectively.  The 

particle diffusion term is necessary for simulations over transport time-scales, where physical 

effects beyond MHD influence the number density profile.  Its implementation is only 

phenomenological, because the particle flux should be consistent with the product of the number 

density and the flow velocity.  Finding a better representation of the particle transport is 

important, but it is beyond the scope of the present effort. 

The steady-state terms make the system of equations suitable for nonlinear computations of 

deviations from a time- independent solution of the same physics model.  We note that this is 

conceptually similar to linear MHD stability analysis of a solution to the force balance equation 

( p∇=× BJ ), but linear MHD is often used to analyze equilibria that evolve on transport time-

scales.  In contrast, computations of nonlinear perturbations over long time-scales require steady-

state fields that are time- independent solutions of the complete system.  For example, the steady 

state may have nonzero electric field ( 0JBV ≠+×− ssssss η ), but it is assumed to be curl- free 

and is not computed with the terms in Eq. (4b) that influence the evolution of the perturbed 

magnetic field through Eq. (4a).  Separating steady-state terms in the equations adds complexity 

to the coding, but it improves numerical accuracy in simulations where the perturbations are 
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small relative to the steady part of the fields [14].  There are also practical benefits for analyzing 

MHD activity.  Fitting equilibrium MHD solutions to data from laboratory measurements is now 

common experimental practice.  Solving the nonlinear evolution of perturbations about a fitted 

equilibrium provides a powerful analysis tool without the need for complete information 

regarding the sources that sustain the equilibrium profiles of current, plasma flow, internal 

energy density, and particle density.  Since NIMROD assumes a domain that is symmetric in the 

periodic coordinate, only symmetric steady-state fields are considered.  The perturbed fields are 

fully three-dimensional, however. 

Thermal transport in Eq. (4f) can be modeled as local anisotropic diffusion with separate 

coefficients for the parallel and perpendicular directions [19], 

 

( )[ ] Tn ∇⋅−−= ⊥+ bbIbbq ˆˆˆˆ
|| χχ  (5) 

 

where BBb ≡ˆ  is the local magnetic direction vector—terms for the separated steady-state 

fields have been suppressed for clarity.  In high temperature plasmas, ||χ  may be many orders of 

magnitude larger than ⊥χ , which presents numerically challenging conditions when b̂  is not 

aligned with the mesh (see Section 4.2).  The source term Q in (4f) represents the sum of Ohmic 

( )2Jη  and viscous ( )VV ∇∇ :Tνρ  heating. 

The boundary conditions considered here for Eqs. (4a-f) are Dirichlet conditions for the 

normal component of B, for T, and for all components of V along the bounding surface.  For the 

tangential component of B and for n, fluxes are specified as natural boundary conditions via 
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surface integrals in the variational form of the equations.  Here, the respective flux densities are 

( )En ×ˆ  and ( )nD∇ . 

The model represented by Eqs. (4a- f) can be extended to include two- fluid effects, non-local 

effects of rapid particle streaming at arbitrary collisionality [20], neoclassical effects [21], and 

ion kinetic effects [22] that are all important for the dynamics in many high temperature plasmas.  

The spatial representation described herein provides a basis for the numerical development of 

these advanced models, in addition to its utility for the non-ideal MHD model. 

 

3. NUMERICAL METHODS 

3.1. Time-Advance 

The numerical approach we have used for Eqs. (4a-f) combines the solution efficiency of a 

semi- implicit time advance with the geometric flexibility and accuracy of a general finite 

element method for spatial representation.  We arrive at our numerical system of equations by 

first applying temporal discretization to Eqs. (4a-f).  The velocity field values are defined at 

integer time indices, whereas the remaining fields are defined at half- integer time indices.  This 

creates a leap- frog scheme, and the semi- implicit operator is used in the velocity advance to 

eliminate time-step restrictions associated with oscillatory behavior.  The stabilizing truncation 

error in this algorithm is dispersive but not dissipative [23], which is an important consideration 

for simulating conditions where the physical dissipation terms are small. 

Our semi- implicit operator consists of two parts, as in Ref. [13].  The first includes terms that 

stabilize wave propagation about the symmetric fields, and the second part is a simpler term that 

stabilizes wave propagation when a significant nonsymmetric component of the solution 

develops.  The first part is derived from the method of differential approximation [24] by 
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considering the ideal portion of the system, which describes oscillatory behavior and ideal linear 

MHD instabilities.  After removing the dissipative and heating terms, the temperature and 

continuity equations are equivalent to the adiabatic pressure relation,  
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Thus, the differential approximation technique is applied to the ideal equations for pressure, 

magnetic field, and flow velocity. 

Applying the approach of Ref. [24] for generic wave equations, the differential approximation 

of an implicit numerical time-advance for the linear ideal MHD equations is 
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where θ is the centering parameter ( 10 ≤≤ θ ) and  0V ≅0  is assumed so that B0, J0, and p0 

satisfy the static force balance equation, 000 p∇=× BJ .  Differentiating Eq. (6a) with respect to 

time and eliminating B and p produces the wave equation, 
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where L is the self- adjoint linear ideal MHD force operator, 
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The wave equation (7) can also be expressed as the system 
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For oscillatory modes, the eigenvalues of L are negative, so that the ( )tt ∂∂∆− /22 VLθ  term on 

the left side of (9a) effectively adds wavenumber-dependent inertia, while the ( )VLt∆θ2  term on 

the right side introduces dissipation [24].  For growing modes, the eigenvalues of L are positive, 

but there is a finite maximum eigenvalue [25]. 
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As discussed in Ref. [24], we may devise a numerical scheme based on the alternative 

differential approximation, Eqs. (9a-c).  First, we use the freedom to drop the ∆t terms on the 

right side of (9a) before discretizing (the equations remain consistent with ideal linear MHD in 

the limit of small ∆t) to avoid numerical dissipation in stable modes.  We then stagger B and p in 

time from V to obtain a leap-frog scheme that is numerically stabilized by the L2t∆−  operator, 

which acts on changes in V.  The resulting method is similar to the semi- implicit methods 

described in Refs. [13], [17], and [18], where all fields are predicted and then corrected, resulting 

in some level of numerical dissipation.  Here, the leap-frog aspects are more closely related to 

the method described in Ref. [23], where a von Neumann stability analysis for homogeneous 

equilibria shows that the magnitude of the numerical amplification factor for the stable modes of 

L is unity, i.e. free of numerical dissipation, as long as the 2θ  coefficient (denoted C0, 

henceforth) is at least 1/4.  For unstable physical modes, the scheme correctly reproduces 

growth, but ∆t must be less than the inverse of the growth rate of the fastest mode to avoid a 

singularity in the time-derivative terms. 

Two modifications of this operator are applied to improve its effectiveness for nonlinear 

simulations.  First, we relax the definition of L to include the symmetric part of the solution, in 

addition to the steady-state fields, in B0, J0, and p0, so that the eigenvectors of the operator 

correspond closely to the linear modes of the system, which is important for accuracy [23], for 

all time.  Though the combined fields may not be in static force balance, in practice they usually 

represent a state that is near equilibrium, and the operator can be symmetrized explicitly in its 

weak form.  The second modification, which accounts for the second part of the semi- implicit 

operator, is to include the isotropic Laplacian operator with a small coefficient to ensure stability 
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as geometrically nonsymmetric pressures develop in nonlinear simulations.  The coefficient is 

computed dynamically from the ‘nonlinear pressure’, 
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which determines the largest variation in the magnetoacoustic wave speed due to asymmetries in 

ϕ, the periodic coordinate.  This semi- implicit approach is closely related to the one discussed in 

Ref. [13], but the dynamically updated coefficients provide an operator that adapts as fields 

change in time.  Updating coefficients with the evolution implies re-computing matrices and 

their factors, but this is done on an as-needed basis rather than at every time-step. 

In addition to wave propagation, the time advance algorithm must address the numerical 

aspects of advection.  For magnetically confined plasmas, we usually encounter flow speeds that 

are significantly less than the largest wave speeds, so limiting the time-step to satisfy the 

Courant-Friedrichs-Lewy condition [26] is not prohibitive in many cases of interest.  The semi-

implicit algorithm can be combined with predictor/corrector steps to stabilize flow without 

introducing low-order numerical dissipation associated with wave propagation [27].  The 

complete marching algorithm is comprised of a sequence of operations that is symbolically 

described by 
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where superscripts denote the time- level for each field (tj = j∆t for constant-∆t computations and 

tj+1/2 = tj + ∆t/2), and the “pre” subscript denotes a prediction.  The last argument of each 

operation indicates whether advective terms (such as VV ∇⋅− ρ  that appears in ΑV) are 

computed from the solution at the previous time- level for a predictor step, or from the predicted 

field for a corrector step.  [Details for each advance are provided below in Eqs. (12-15).]  The 

choice of predictor/correct advection over upwind methods simplifies the implementatio n with 

the finite element representation.  

Advancing the semi- implicit leap-frog scheme with predictor/corrector advection requires the 

solution of algebraic systems for each advance in the marching algorithm.  Besides the semi-

implicit operator, which is part of the ΑV operation, the spatial representation described in 

Section 3.2 leads to mass matrices, and dissipation terms are computed implicitly.  Using 

implicit dissipation is particularly important for thermal conduction, where parallel transport is 

typically the fastest behavior in the system.  Wave propagation is also much faster than nonlinear 
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tearing behavior.  Consequently, the matrices in for advancing velocity and temperature are ill-

conditioned.  These linear systems must be solved with sufficient numerical precision to 

accurately reproduce eigenvectors associated with small eigenvalues, since they represent the 

slow and physically relevant behavior.  In the other equations, the implicit dissipation terms 

typically have small coefficients and introduce no computational penalty, since the mass 

matrices already necessitate solution of algebraic systems. 

 

3.2. Spatial Representation 

A finite-dimensional spatial representation is achieved through a basis function expansion and 

a weak form of the marching equations that is equivalent to a collection of variational problems.  

The choice of basis functions and the selection of physical fields to expand are central issues for 

this approach.  Using 2D Lagrange-type finite elements enables representation of arbitrarily 

shaped regions of the poloidal plane, and the resulting solution space automatically provides the 

level of continuity required for a conforming approximation of the non-ideal MHD equations, (4-

5).  For the remaining direction, which is periodic , the finite Fourier series is an appropriate 

expansion.  We express the collection of variational problems in cylindrical coordinates (R,Z,ϕ) 

for toroidal and cylindrical geometries or in Cartesian coordinates (x,y,z) for straight 

configurations with a periodic z-coordinate.  Nonuniform meshing in the physical poloidal 

coordinates (R,Z or x,y) is accomplished through mappings from element coordinates [5]. 

Choosing flow velocity, magnetic field, particle number density and temperature as the fields 

to expand, our finite-dimensional solution space (Sh,N,p) is the product space composed of all 

functions p,,NhVv ∈ , p,,NhBb ∈ , p,, Nhnn ∈ , and p,, NhTT ∈  that satisfy the essential 

conditions for the system, i.e. the respective Dirichlet boundary conditions discussed in Section 
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2.  The subscripts denote the measure of the poloidal mesh spacing (h), the largest Fourier index 

(N), and the polynomial degree of the finite element basis functions (p).  These parameters 

identify a particular space Sh,N,p  from the family of all such spaces.  Members of the Vh,N,p  and 

Bh,N,p  spaces have the expansion 
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while members of nh,N,p  and Th,N,p  have the expansion 
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The vector and scalar basis functions in Eqs. (10a-b) are 

 

( ) ( ) ( ) and  ,nexp,ˆ 21ini ϕξξψϕα ivv e≡  (11a) 

 

( ) ( )ϕξξψα nexp, 21iin i≡  , (11b) 

 

where ψ i is the i-th 2D polynomial basis function of degree p in the element coordinates ξ1 and 

ξ2.  The Fourier components have indices n=0,1,…,N, and the direction vectors have ν=R,Z,ϕ for 

cylindrical coordinates or ν=x,y,z for Cartesian coordinates.  Henceforth, a subscripted capital 

like Vh,N,p  denotes a function space of the form (10a) or (10b) that is characterized by h, N, and 



 

21 

p, whereas the small-case v denotes an individual function in Vh,N,p; an exception is made for 

temperature functions (T) to avoid confusion with time. 

The inverse of the transformation ( ) ( )2121 ,,, ξξξξ ZR  within each finite element is implied in 

Eqs. (10a-b).  For many simulations, we use a topologically polar mesh of quadrilateral elements 

(for example, see Fig. 1a), where the le ft side of the logically rectangular mesh is mapped to the 

(R,Z) coordinates of the magnetic axis of the steady-state fields.  In cases with relatively uniform 

mesh spacing, we define the transformation with bicubic splines of R and Z in global mesh 

coordinates that coincide with the local element coordinates within each quadrilateral element, 

except for an offset that is unique to each element.  For bilinear and biquadratic ψ i (p=1,2, 

respectively), this mapping is superparametric, i.e. the mapping is of higher order than the 

representation of the solution fields, and a sufficient condition for convergence is not met [5].  

However, for simulations with smoothly varying mesh spacing, we find better accuracy than 

with lower-order mappings for the same mesh.  We also expand the steady-state fields with 

bicubic splines in these cases.  The cubic splines are susceptible to overshoot with strong mesh 

packing, however, because derivatives with respect to the logical coordinates change abruptly.  

Where strong mesh packing is applied, we use isoparametric mappings for R and Z, and the 

steady-state fields are interpolated with polynomials of the same degree in the element 

coordinates. 

The physical coordinates in Eqs. (10a-b) have been expressed as cylindrical coordinates for 

toroidal and cylindrical geometry.  Taking zLzyZxR πϕ 2,, →→→  makes the 

representation suitable for computing in Cartesian coordinates where boundary conditions at z=0 

and z=Lz are periodic.  Terms involving derivatives with respect to the periodic coordinate and 

those resulting from cylindrical curvature have been coded to allow computation with either 
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coordinate system.  The implementation of regularity conditio ns for cylindrical configurations 

(where the domain includes R=0) is discussed in the Appendix. 

Using test functions from the same space as the solution fields, 

{ } p,,
1/2j1/2j1/2jj ,,, NhSq ∈Θ +++cw , produces a Galerkin approximation that is equivalent to a 

variational problem for each step in our time-advance.  Starting with flow velocity, denoting with 

∆v either the predictor increment ∆vpre or the corrector increment ∆vcor, and suppressing the 

steady-state fields for simplicity, we find p,, NhVv ∈∆  that satisfy 
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for all p,,NhVw ∈ .  The new flow velocity is then cor
j1j vvv ∆+=+ .  In (12), pj+1/2 is treated 

as a nodal quantity, i.e. coefficients of nj+1/2 and Tj+1/2 are multiplied and pj+1/2 is interpolated 

from the resulting product coefficients.  In addition, the predictor/corrector advectio n uses jvv =  

for the predictor step and pre
j vvv ∆+= f  for the corrector step with the centering coefficient f.  
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The parameter g is used to control the temporal differencing of the dissipation terms, and we 

consider implicit differencing with 0.5=g=1.  For particle number density, we have  

 

( ) ( ){ } ( ) ( ) ( ){ }∫∫ ++ ∇⋅∇−⋅∇∆=∆∇⋅∇∆+∆ 1/2j1j **** nqDnqtdnqtDgnqd vxx  (13) 

 

for all p,,Nhnq∈ , where 1/2j+= nn  for the predictor step and pre
1/2j nfnn ∆+= + for the 

corrector step.  For the temperature advance, we have 
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for all p,, NhT∈Θ .  Finally, for the magnetic advance, we have  
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for all p,,NhBc ∈ , where the surface term represents the influence of an applied electric field. 

The semi- implicit operator occupies most of the left side of Eq. (12), and it includes the 

Laplacian part for stabilizing wave propagation in geometrically nonsymmetric states arising 
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from nonlinear dynamics.  For conditions of interest, 00
2
0 ppnl γµ +<< B , and accuracy is not 

sensitive to the value of C1 if it is large enough ( 4/11 ≥C ) for numerical stability.  The terms 

with coefficient 22
0 tC ∆  result from the ideal MHD operator L defined in Eq. (8), but they are 

symmetrized explicitly for conditions where the 0-subscript fields are not in equilibrium, as 

discussed above.  Symmetrizing ensures that the semi- implicit operator has real eigenvalues, 

since the finite element method then produces a Hermitian matrix by construction.  If ∆t does not 

exceed the inverse of the growth rate of the most unstable mode of the ideal MHD system, the 

resulting matrix is also positive-definite.  This condition can always be satisfied in initial value 

computations, and it certainly will be in a temporally converged calculation. 

The forces on the right side of Eq. (12) are computed from separate nodal fields for B and p, 

unlike the stabilizing corrections to these forces that appear through the semi- implicit operator.  

To our knowledge, the disparate representation of implicit and explicit terms does not have 

negative consequences; though, it does affect convergence (see Section 6).  Early versions of the 

NIMROD algorithm were based on von Neumann analysis of the differencing equivalent to 

using bilinear finite elements [7, 28].  We found that the numerical dispersion relation for waves 

in an infinite uniform equilibrium has the shear and compressional branches decoupled to all 

orders in h and ∆t when velocity and magnetic field are discretized; this could not be achieved 

for formulations based on currents and potentials.  Thus, the impact of the inconsistent 

representation of implicit and explicit terms is strongly dependent on how the system is 

formulated.  (In contrast, second -order operators in finite difference and finite volume methods 

are usually constructed from first-order operators, avoiding inconsistency.  However, preserving 

the symmetry of complicated operators like L in general geometry is difficult.) 
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Nonlinear terms and coefficients that depend on ϕ require products of Fourier series 

expansions.  We apply a pseudospectral method [16], using the Fast Fourier Transform (FFT) to 

find data on a uniform grid over the periodic coordinate; however, the Fourier representation is 

padded with zero coefficients at high wavenumbers to prevent aliasing from quadratic 

nonlinearities [29].  Algebraic operations are performed on the periodic grid to construct the 

needed terms, followed by a transform of the result to obtain its Fourier decomposition.  To 

allow computations involving spatial derivatives of the expanded fields (like T∇ ), the 

transforms and pseudospectral computations are performed at the quadrature points for 

numerical integration.  The appearance of ϕ-dependent coefficients in the left sides of the 

equations, like the mass density in the flow velocity advance and the magnetic direction vector in 

the thermal conduction of the temperature advance, leads to convolution matrices that are dense 

in the Fourier component index.  We solve these systems with a matrix- free iterative method, in 

order to use FFTs in a direct computation of the matrix-vector product, instead of computing 

convolutions explicitly.  For magnetic fusion plasmas, the nonsymmetric (n>0) Fourier 

components of ρ are small and do not have a significant effect on the flow velocity evolution 

equation, (4e).  The option of dropping the associated small terms expedites computation, since it 

allows solving N independent 2D linear systems for each velocity update instead of solving one 

coupled 3D linear system. 

The mathematical symmetries that exists in the weak form of the temporal advance and the 

caveat that ∆t is small enough so that all eigenvalues of the left side of Eq. (12) are positive 

imply equivalence between Eqs. (12-15) and a set of variational problems.  Furthermore, the 

solution space Sh,N,p is admissible, because all terms on the left sides of Eqs. (12-15) are 

integrable and the essential conditions are enforced.  The representation is therefore a 
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conforming approximation, and we can identify the left side of each of Eqs. (12-15) as the 

respective strain energy.  We then expect spatial convergence rates that increase with the 

polynomial degree of the basis function, p, according to Eqs. (2-3).  However, the terms on the 

right sides of Eqs. (12-15) are produced during the course of the temporal advance.  If a 

calculation tends to create fields that cannot be resolved smoothly, assumptions used in deriving 

the convergence-rate relations are violated, and globally high-order discretization is not 

effective.  Adaptive techniques, such as the hp finite-element method [30], may be better suited 

for these conditions.  For high temperature plasmas, numerical accuracy requires resolution of 

the smallest spatial features (tearing layers), so we restrict attention to parameters where all 

length-scales can be resolved. 

The numerical treatment of the magnetic divergence constraint is another central issue for 

accurate simulation.  Re-expressing Eq. (15) as 
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for all p,,NhBc ∈ , shows that divbtκ∆  has the role of a Lagrange multiplier for the constraint 

( ) 0
23/2j =⋅∇ +b  in the variational problem for bj+3/2, provided that g?0.  If it were necessary to 

use arbitrarily large values of the product divbtκ∆ , our continuous solution space p,,NhB  would 

not approach a meaningful divergence- free representation in the limit of 0→h , because the 

formulation does not satisfy divergence-stability (see [31] and references therein).  As described 

below in Section 6, the lack of divergence-stability in this case results from imposing too many 
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constraints through the numerical calculation of ( )23/2j+⋅∇ b  for the finite number of degrees of 

freedom in the space [32].  Alternatively, if the value of divbtκ∆  is too small, the constraint is 

not imposed.  In either limit, the ‘strain energy’ represented by the left side of Eq. (16) is a poor 

norm for choosing the best available solution.  For time-dependent problems like the ones 

considered here, arbitrarily large values of divbtκ∆  are not required, to control the generation of 

error per time-step is controlled.  The convergence stud ies presented in Section 4 show that 

acceptable results are achieved routinely for basis function with p=2. 

Regarding practical considerations, the poloidal mesh is divided into structured blocks of 

quadrilateral elements and unstructured blocks of triangular elements (see Fig. 1b).  This 

organization facilitates domain decomposition for parallel computation and adds geometric 

flexibility.  At this time, the implementation of triangular elements in NIMROD is incomplete 

(the ψi in triangular elements are restricted to linear basis functions), so the results described 

below consider computations with quadrilateral elements only.  

 

4. BENCHMARKS AND CONVERGENCE RATES 

The performance of a numerical algorithm for magnetic fusion applications should be 

examined in conditions that are sufficiently stiff and anisotropic to represent laboratory plasmas.  

Since stiffness associated with the rapid propagation of MHD waves arises primarily from linear 

terms, the linear resistive tearing mode described below is an important benchmark for large 

time-step performance.  The highly localized nature of the eigenfunction also exercises the 

treatment of magnetic field divergence error and nonuniform meshing.  The second test problem, 

presented in Section 4.2, provides a quantitative benchmark of anisotropic thermal conduction. 
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4.1 Linear Tearing Mode 

The domain for our resistive MHD benchmark is a straight cylinder with periodic ends.  For a 

selected helical perturbation ( zLziie /n2m~ πθ + , where m and n are fixed integers, and Lz is the 

cylinder length), there exists a concentric cylindrical surface within the domain where the 

perturbation has constant phase along the equilibrium magnetic field lines, which lie within the 

surface.  The linear MHD response to the perturbation is a resonance (due to anisotropy) such 

that flows will be local to this surface.  However, resistivity, inertia, and viscosity prevent 

singular behavior by smoothing spatial scales that are small relative to global length-scales.  We 

have chosen cylindrical geometry for the test to allow comparison of numerical results with an 

analytic dispersion relation that is valid in the limit of vanishing resistivity.  For comparison, we 

determine the analytic eigenvalue, the matching parameter ∆ ′  resulting from singular 

perturbation [33, 34], by integrating the Euler-Lagrange equations for the helical perturbation 

[35] in the regions outside the tearing layer.  In the pressureless limit, the growth rate for 

asymptotically small resistivity is then computed from the dispersion relation [34] 
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where q is the ‘safety factor’ or magnetic winding number ( θπ BLrB zz /2  in a periodic cylinder) 

using equilibrium values at the resonant surface radius (rs, where q(rs)=-m/n).  The equilibrium 

we consider is the pressureless paramagnetic pinch [36] with normalized on-axis current density 

( BJa /0µ , where a  is the cylinder radius) set to 3.  The q profile varies from 1.2 on axis to 0.19 



 

29 

at r=a for an aspect ratio Lz /2πa=5/9, and resonance for the m=1, n=-1 perturbation occurs at 

r=0.3859a (see Fig. 2).  Solving the Euler-Lagrange equations for this equilibrium and resonant 

surface yields ∆′ =6.679.  This value is verified with Fig. 3 of Ref. [37] after changing 

normalization (Ref. [37] has J normalized to unity on axis, and a is varied). 

The NIMROD computations use the finite element mesh to represent the r-θ plane of the 

straight periodic cylinder with Fourier representation for the axial direction, so the calculations 

solve for the Cartesian components of V and B.  The meshes are circular-polar with grid lines 

running along constant θ-values with uniform spacing and along constant r-values with 

nonuniform spacing to allow packing near the resonant surface.  An example is the 16×16 mesh 

of bicubic elements with isoparametric mapping shown in Fig. 1a.  The radial mesh spacing as a 

function of radial cell index is based on the local q-value by defining a discrete cumulative 

distribution, 
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where Ap and Wp are dimensionless parameters that control the magnitude and extent of packing, 

and rj, j=1,2,…Nξ are cell-center locations of a preliminary uniform mesh.  We use the fi-values 

to define a continuous piecewise linear function of radius that increases from zero to f1 over the 

first cell in the uniform mesh, from f1 to f2 over the second cell, and so on, reaching ξNf  at the 

right side of the mesh.  Vertices of the packed mesh are then identified by the radii where the 
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piecewise linear function has the values ξξ Nf Nk  for k=0,1,2,…  Nξ.  Results for the tearing 

mode have been computed with Wp=0.075, 5=Ap=12, and meshes ranging from 8× 8 (with 

bicubic elements) to 256 × 256 (with bilinear elements).  The resulting mesh spacing changes too 

abruptly to avoid overshoot with cubic splines, so the mapping and equilibrium field data are 

interpolated with the same basis functions used for the solution space.  For numerical integration, 

the tests have been completed with 9 Gaussian quadrature points per element for bilinear 

elements, 16 for biquadratic, and 25 for bicubic, which is an additional point per direction 

relative to what is normally used. 

The calculations are run as initial value problems, but only linear terms are included in the 

time-advance, so the behavior is independent of the perturbation amplitude.  The initial flow 

velocity perturbation is chosen to be smooth and to have nonzero curl to excite the tearing 

instability, but otherwise, it is arbitrary.  The value of kinematic viscosity is chosen to be 

sufficiently small as to have no significant effect on the computed growth; through 

experimentation this condition is found to be 3
0 10Pm −≤≡ ηνµ  for this mode.  We fix the 

mass density and equilibrium magnetic field to set the Alfvén speed ( ρµ0/BvA ≡ ) to 1 m/s 

on axis, and with a=1 m, the Lundquist number ( ηµ /S 0 Aav≡ ) is numerically equivalent to the 

inverse of the electrical diffusivity. 

The essential features of the tearing mode are 1) adherence to the asymptotic analytic scaling 

S-3/5 evident in Eq. (17) and 2) near-singular behavior of the eigenfunction in the vicinity of the 

resonant surface.  Figure 3 displays computed growth rates on a logarithmic scale to show the 

asymptotic behavior at large S-values.  At the smaller S-values, the tearing layer extends over 

non-negligible variations in the equilibrium, and the behavior is more diffusive than what is 
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assumed in the asymptotic analytic calculations of Refs. [33, 34].  The NIMROD results for 

S=105-106 have been computed with a 32× 32 mesh of bicubic elements with Ap=5.  At S=107, a 

48× 48 mesh of bicubic elements with Ap=8 resolves the more localized eigenfunction.  At 

S=108, a larger mesh of biquadratic elements proves more tractable, and resolution to within 5% 

of the analytic growth rate is achieved with a 144× 144 mesh with Ap=12. 

Flow velocity components of the eigenfunction for S=106 computed with the 32× 32 mesh of 

bicubic elements show the localized response associated with the resonant surface (see Fig. 4).  

Although the growth rate is converged with respect to spatial resolution and at ∆t=100τA is 

accurate to within 2% of the temporally converged value, there are azimuthal variations in the 

axial velocity projection evident at the scale of the mesh (Fig. 4c).  These variations are reduced 

when the computation is performed with more elements in the azimuthal direction or by reducing 

the value of ∆t, so the fully converged solution with p=3 is free of the error.  However, similar 

computations with a) a 48× 48 mesh of biquadratic elements, b) a 24 × 24 mesh of biquartic 

elements, and c) a 20× 20 mesh of biquintic elements—all with roughly the same amount of data 

as the 32×32 bicubic computation—show no azimuthal variations (see Fig. 4d), and at 

∆t=100τA, there is only a 0.3% variation among the computed growth rates. 

Spatial convergence properties with respect to the mode growth rate at S=106 for biquadratic 

and bicubic elements are shown in Fig. 5.  For each calculation, the numbers of elements in the 

radial and azimuthal directions are identical, and the mesh-packing parameters Ap and Wp are 

kept fixed as the number of elements is varied.  Clearly, convergence to within 1-2% is quite 

rapid with p=2 basis functions.  In comparison, the growth rate for a 256× 256 bilinear mesh with 

Ap=10 and otherwise similar parameters (not shown in Fig. 5) is in error by more than 25%.  
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Given that the temporal resolution is sufficient for the analytical dispersion relation (17) to 

describe the growth of the numerical solution from time-step to time-step, our expectation for the 

spatial convergence of the computed growth rate is ~hp by the following argument:  The spatial 

distribution of the computed eigenfunction enters Eq. (17) through the matching parameter ∆′ .  

Furthermore, the ∆′ -value computed from the numerical solution can be described as 

)(hEa +∆′ , where the error, E, goes to zero as h is reduced and the computed ∆′  approaches its 

analytical value, a∆′ .  For small h, the resulting growth rate 

]/)()5/4(1[)]([~)( 5/45/4
aaa hEhEh ∆′+∆′≅+∆′γ , so the error in the computed growth rate is 

proportional to the error in the computed matching parameter.  Noting that 

sss rrrrrr bdrdbdrdb )(])/()/[( −+ −=∆′  depends on derivatives of the eigenfunction on either 

side of the resonant surface, we expect to observe ( ) ( ) p~0 hh γγ − , i.e. the rate given by finite 

element analysis for the convergence of first derivatives, Eq. (3).  The results for biquadratic and 

bicubic elements show faster convergence in this test.  For example, the biquadratic series of 

computations for 48, 96, and 192 elements per direction shows ( ) ( ) 2.3~0 hh γγ − . 

Performance with respect to the magnetic divergence constraint is more easily related to finite 

element analysis.  In Fig. 6, we plot the 2-norm of the error vs. h on a log- log scale for the 

biquadratic and bicubic calculations represented in Fig. 5 and for three bilinear computations.  

As h is decreased, the convergence rate for each basis approaches the value of p, consistent with 

Eq. (3).  In all of these cases, ∆t=100 and κdivb=0.1, where the value of κdivb has been chosen to 

achieve an acceptable error level for the computation with the coarsest mesh, the 8× 8 mesh of 

bicubic elements. 
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Since the diffusivity κdivb is numerical, a result is not converged unless it is insensitive to the 

κdivb-value.  Therefore, achieving this independence readily as h is reduced is a desirable 

property for the algorithm.  To determine the sensitivity in the tearing-mode calculations, we 

have varied κdivb in computations with different basis functions.  The resulting growth rate and 

magnetic divergence error for a 128 ×128 bilinear mesh, a 48× 48 biquadratic mesh, and a 32 × 32 

bicubic mesh are plotted in Fig. 7.  The broad range of κdivb-values producing the same growth 

rate for the biquadratic and bicubic cases provides confidence that the error diffusion approach 

leads to a good strain energy norm for the magnetic advance when p=2.  In contrast, the 

sensitivity of the bilinear result to the κdivb-value implies proximity between conditions where 

the error diffusion term is insufficient to control the error and conditions where the term imposes 

too many constraints.  However, we note that while the performance of bilinear elements is poor 

in this test, they have been used effectively in simulations with larger levels of physical 

dissipation. 

The last set of computations for the tearing-mode problem considers a range of time-step 

values to examine temporal convergence properties.  The computed growth rates for S=106  are 

plotted in Fig. 8 as a function of γ0∆ t, where γ0  is the converged value, with dissipation terms 

evaluated as centered and forward approximations with respect to the time-step [setting the 

parameter g of Eqs. (12-15) to 0.5 and 1, respectively].  All of the results shown in Fig. 8 are 

within 10% of the converged value, but it is possible to distinguish different asymptotic behavior 

for the two approximations.  Results with the centered approximation are well fit by the 

quadratic 2
0

34 )(1011.51044.6 tcentered ∆×−×≅ −− γγ , demonstrating second-order 

convergence, whereas a linear term is needed to fit the nonmonotonic behavior of the forward 
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approximation, 2
0

3
0

44 )(1094.4)(1054.11044.6 ttforward ∆×−∆×+×≅ −−− γγγ .  The linear 

term dominates the error in the forward approximation only for γ0∆ t=0.03, and a transition to 

quadratic behavior occurs where the computed growth rate is still quite accurate.  Thus, the 

truncation error from the dissipation terms has only a small effect on the accuracy in this 

representative calculation, where the physical conditions are nearly dissipation-free.  Temporal 

convergence is primarily determined by the numerical method used for the large ideal terms—

the leap-frog method stabilized by the semi- implicit operator.  Since the semi- implicit operator 

enters with a ∆ t2 coefficient (see Section 3.1), the method retains the second -order accuracy of 

the basic leap- frog method.  Forward approximation of the dissipation terms is routinely used in 

nonlinear NIMROD simulations to provide damping for all wavenumbers that are represented, 

unlike time-centered dissipation.  

 

4.2 Anisotropic Thermal Conduction 

Equation (5) for diffusive heat flux reproduces rapid equilibration along magnetic field lines 

and relatively slow energy transport across magnetic flux surfaces when the ratio of thermal 

conductivities, ⊥χχ|| , is large.  In numerical computations with this model, truncation errors in 

the temperature gradient are multiplied by the parallel conductivity, and the resulting heat flux 

errors tend to produce artificial perpendicular transport that can be attributed to the misalignment 

of B and the computed T∇ .  For our representation, temperature is expanded in the form of 

(10b), and continuity at the interfaces between elements is not enforced for spatial derivatives.  

Thus, T∇  is a piecewise continuous vector field that in general has discontinuity along the 

element interfaces.  With a continuous and therefore different representation of magnetic field, 
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such as an expansion in the form of (10a), numerical computations of parallel thermal 

equilibration do not reproduce 0=∇⋅ TB  everywhere unless the distribution of B is restricted.  

(For example, the gradient of the expanded temperature field can satisfy 0=∇⋅ TB  everywhere 

if B is uniform.)  The most challenging conditions for numerical computation arise when 

1|| >>⊥χχ  and B has a general distribution with its direction varying across the mesh—

conditions that often occur in the simulation of nonlinear MHD activity in high-temperature 

plasmas.  Here, we devise a test that measures the effect of artificial heat transport in finite 

element computations and use it to show that high-order elements can satisfy 0=∇⋅ TB  with 

sufficient accuracy for realistic ⊥χχ|| -ratios. 

While it is possible to evaluate the convergence of T∇⋅B  in a sequence of numerical 

computations, the impact of the truncation error on thermal transport when computing with 

realistic ⊥χχ|| -ratios is the more pertinent issue for time-dependent MHD simulations with 

evolving temperature and pressure profiles.  Thus, our test problem has been devised so that the 

effective perpendicular thermal conductivity, including conduction from numerical errors, can be 

easily measured from the resulting temperature distribution.  The domain is the unit square, 

5.05.0,5.05.0 ≤≤−≤≤− yx , and homogeneous Dirichlet boundary conditions are imposed on 

T along the entire boundary.  The source )cos()cos(2 2 yxQ πππ=  is used in the temperature 

evolution equation to drive the lowest eigenmode of the configuration, and a charge current 

density directed out of the x-y plane is induced by an electric field that has the same spatial 

dependence as the heat source.  An extremely large mass density prevents MHD motions, so that 

diffusive behavior dominates.  Analytically, the resulting magnetic field is everywhere tangent to 

the contours of constant temperature in the solution for isotropic ( ⊥= χχ|| ) thermal conduction, 
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)cos()cos(),( 1 yxyxT ππχ −
⊥= , so anisotropic conditions with ⊥>> χχ||  have the same solution.  

In numerical computations, transport that is artificially enhanced by truncation errors in the heat 

flux vector can lead to a maximum temperature that is less than 1−
⊥χ , even when the alignment 

of B and the computed T∇  appears acceptable.  By setting the ⊥χ -coefficient to unity in the 

calculatio ns, we arrange the problem so that the computed steady-state value of ( )0,01−T  

provides a direct measure of the resulting effective perpendicular conductivity including 

truncation error.  As a guide, errors of order 10-2  would normally be considered acceptable for 

nonlinear simulations.  Note that the magnetic field direction varies within the domain, so 

computations with a simple rectangular mesh provide a rigorous test. 

To study convergence properties, the conduction problem is run to steady state with ⊥χχ|| -

ratios of 103, 106, and 109 with a range of mesh sizes and basis function p-values.  Numerical 

integration for the finite elements is performed with the standard number of Gaussian quadrature 

points for a given basis (4 for p=1, 9 for p=2, etc.).  The resulting error in perpendicular 

diffusivity, ( ) |10,0| 1 −−T , is plotted in Fig. 9.  Clearly, the accuracy and convergence rate 

improve substantially with p for this problem, where the solution is a smooth function of 

position.  Convergence rates approach the values predicted by Eq. (2) for ⊥χχ|| -ratios of 103 

and 106.  For 9
|| 10=⊥χχ , the obtained convergence rates are slightly less than the predictions.  

Nonetheless, we find that elements with p=3 can meet a sufficient level of accuracy in these 

extreme but laboratory-plasma-relevant conditions, whereas bilinear elements struggle at 

3
|| 10=⊥χχ  and are entirely inadequate at 6

|| 10=⊥χχ .  A realistic applicatio n including 
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three-dimensional magnetic topology is considered in the following section and confirms the 

effectiveness of the high-order spatial representation.  

 

5. NONLINEAR TEARING EVOLUTION 

As an example of a nonlinear simulation in stiff conditions with large anisotropy, we consider 

a resistive tearing mode in a toroidal MHD equilibrium with noncircular cross-section, tokamak 

safety-factor profile, and aspect ratio R/a=3 (see Fig. 10).  A vanishingly small value of plasma-

beta ( 2
0 /2 BPµβ ≡ ) has been chosen to prevent stabilization of the current-driven mode [38].  

In these conditions, the internal energy evolution serves as a measure of confinement properties, 

but it does not play a role in the MHD activity.  The mode, while in its linear stage, is then 

similar to the cylinder mode described in Section 4.1.  The primary distinguishing feature is 

coupling among poloidal harmonics due to toroidal geometry and the shaped cross-section.  

Responses that are resonant at surfaces with different rational q-values are coupled if they have 

the same toroidal Fourier index, n.  Other parameters for the simulation are: nss=1020 m-3, τA=1 

µs, S=106, Pm=0.1, 0
-12 /100sm 42 µηχ ==⊥ , and -127

|| sm102.4 ×=χ .  Here, the Alfvén time 

is defined as ( )
vac

/0 0 φρµτ BRqA ≡ , where the denominator is the value of the corresponding 

vacuum toroidal magnetic field at the geometric center of the cross section.  The numerical 

particle diffusivity is set to the same value as the perpendicular thermal diffusivity, ⊥= χD , and 

for controlling divergence error, divbκ =100 m2s-1. 

Since the tearing mode is the only MHD instability of the equilibrium, we first run a linear 

computation for the n=1 toroidal Fourier harmonic.  The resulting eigenmode, plotted in Fig. 11, 

shows coupling from the dominant m=2 poloidal harmonic to the m=3 and m=4 harmonics, and 
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the computed growth rate is 141072.4 −−× Aτ .  The nonlinear simulation has toroidal resolution 

0=n=2, and the n=1 eigenmode from the linear computation is used as the initial condition with 

its amplitude adjusted to create a small but finite-sized magnetic island.  Both computations 

(linear and nonlinear) use a 32× 32 mesh of biquartic elements (p=4) with moderate packing at 

the q=2 and q=3 surfaces (see Fig. 10a).  The time-step in the linear computation is ∆t=2τA, and 

in the nonlinear simulation its value is allowed to increase by a factor of two during the 

simulation.  The boundary conditions described in Section 2 imply that the MHD dynamics 

reproduce fixed-boundary behavior in this configuration where there is no vacuum region 

surrounding the conducting plasma. 

In the nonlinear simulation, the growth of the mode is immediately slowed from the 

exponential time-dependence that characterizes linear behavior.  This is observed from Fig. 12a 

through the non-constant slope of magnetic perturbation energy evolution plotted on a semi- log 

scale.  The result is consistent with analytic theory in that the island width (proportional to the 

fourth root of perturbation energy) is predicted to have linear- in-time growth starting when the 

helical island chain extends beyond the resistive tearing layer [39].  Here, the linear time-

dependence of the island width occurs for t<12 ms, as shown in Fig. 12b, and the slope is within 

33% of the value given by the analytical relation 022.1/ µη∆′=dtdw  [40], where ∆′  has been 

estimated from the cylindrical dispersion relation, Eq. (17), using a growth rate calculated from 

the same toroidal equilibrium but with reduced viscosity.  Over a time-scale that is long relative 

to the energy transport time-scale, ⊥χ2a , the free energy in the equilibrium current density 

profile is expended, and a three-dimensional steady state is achieved.  The simulation also shows 

that the coupling of harmonics illustrated in Fig. 11b leads to a secondary magnetic island chain 
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at the q=3 surface.  Thus, the final state shown in Fig. 12c has two sets of helical magnetic 

surfaces that are embedded in nested toroidal surfaces. 

Changes in the temperature profile due to the presence of a magnetic island can lead to 

nonlinear neoclassical effects in tokamaks [41, 42], so accurate modeling of island 

thermodynamics is also important for tokamak simulation studies.  Whether anisotropic heat 

conduction affects the temperature profile in the presence of the island depends on the balance of 

diffusion in the parallel and perpendicular directions [43].  The length-scale for parallel 

conduction is effectively infinite at the island separatrix, since the magnetic field- lines reconnect  

on themselves after a finite number of transits and do not trace a complete helical surface.  

However, flattening of the temperature profile occurs within the island when magnetic 

reconnection decreases the parallel length-scale enough so that parallel conduction occurs at a 

rate that is competitive with perpendicular conduction, i.e. 22
|||| ⊥⊥≅ LL χχ .  Since the parallel 

length-scale within the island is inversely proportional to the island width (for island widths that 

are small in comparison to the length-scale of the equilibrium magnetic shear), and the 

perpendicular length-scale is proportional to the island width, the critical island width required to 

affect the temperature is expected to follow ( ) 4/1
||~ −

⊥χχcW  [43]. 

To test whether the  NIMROD algorithm reproduces the theoretical dependence, we use the 

magnetic field configuration from five different times in the nonlinear simulation and run 

thermal-conduction-only computations with gradually increasing χ|| in each configuration.  

Recording the ⊥χχ|| -ratio required to produce an inflection of the temperature profile at the 

resonant surface as a function of island width then permits comparison.  (The alternative of 

running a series of nonlinear MHD simulations with different ⊥χχ|| -ratios would require far 
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more computation.)  The simulation result for the island-width scaling, ( ) 24.0
||~ −

⊥χχw , is in 

good agreement with the analytic scaling of Ref. [43], and even the numerical coefficients are 

comparable, as illustrated in Fig. 13.  The discrepancy reflects the fact that the numerically 

observed w and Wc are different quantities.  The analytic relation has been derived as a scaling 

argument to distinguish small- and large-island-width behavior by identifying conditions where 

the parallel and perpendicular diffusion times match.  It is not a precise relation for the condition 

recorded from the simulations, the inflection of the T-profile.  The analytic relation has also been 

derived for cylindrical geometry and does not account for any toroidal effects that influence the 

island geometry.  In fact, the simulation results provide empirical evidence supporting the 

application of the analytic scaling to toroidal configurations. 

 

6. DISCUSSION 

The test results presented in Sections 4 and 5 demonstrate favorable convergence properties in 

stiff and anisotropic conditions when the degree of the polynomial basis functions, p, is 2 or 

larger.  For p=1, the poor performance can be anticipated from the occurrence of ‘spectral 

pollution’ in ideal MHD eigenvalue calculations [1,2] and from the divergence-stability 

consideration in steady incompressible fluid computations [31,32].  However, while our 

approach to spatial representation is generally related to the methods used in these applications, 

there are unique aspects in both the non- ideal MHD application and the algorithm.  Here, we 

discuss how the unique aspects contribute to the favorable performance in the time-dependent 

MHD computations with p≥2. 

A numerical approximation of the ideal-MHD linear force operator, L from Eq. (8), appears 

in our semi- implicit time-advance algorithm and in computations of ideal MHD eigenvalue 
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problems [1].  However, it plays a different role in the two applications.  Observe that an ideal 

MHD eigenvalue problem can be defined by considering C0∆t2→λ as a free parameter in our 

velocity advance, Eq. (12), with C1=ν=0 and dropping all terms on the right side.  The remaining 

equations, (13-15), and the solution space for n, T, and B would not be used, so the numerical 

spectrum is determined by the approximations of L and the inertial term, that result from the 

basis functions used for Vh,N,p .  In contrast, the purpose of the L-operator appearing in our time-

advance algorithm is to add selective numerical dispersion to the leap- frog method.  Here, the L-

operator does not, in itself, determine the result of linear computation, because the algorithm has 

separate computations of n, T, and B, and the solution space is correspondingly larger.  As a 

means to extend numerical stability beyond the ∆t-limitations arising in a purely explicit time-

advance, semi- implicit operators only need to approximate the combined operation of the 

explicit terms appearing on the right sides of Eqs. (12-15)—see Eq. (20) of Ref. [23].  Thus, it is 

possible to use approximations of L that are unacceptable from the ideal MHD eigenvalue 

standpoint, provided that errors resulting from the spectrum of the semi- implicit operator 

diminish rapid ly as time-dependent results are converged.  Although we have not analyzed the 

spectrum of our semi- implicit operator, the results presented in Section 4 show clearly show 

favorable convergence properties for p≥2. 

A more readily apparent distinction from the ideal MHD problem is that the non- ideal MHD 

system (4a-f) is higher-order as a system of partial differential equations, due to the dissipative 

terms.  To ensure that the dissipative terms, like ( ) ( )vwx ∆∇∇∆∫ ∗ :ρνtgd  in Eq. (12), are square-

integrable, hence, to be admissible in a conforming approximation, the basis functions must be 

continuous.  The alternative is to use a mixed method [44] with additional equations and finite-
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dimensional spaces for the spatial derivatives themselves, but this is achieved at the expense of 

solving larger linear systems. 

While the algorithms for ideal MHD eigenvalue problems and time-dependent non-ideal 

MHD can differ in important ways, general properties that lead to effective computation are 

similar, because the ideal terms also dominate the behavior of all stiff time-dependent MHD 

systems.  The most important properties [1, 2, 45] that are needed for the ideal part of the 

algorithm are 1) resolution of ∇⋅B  in singular layers and 2) accurate approximation of nearly 

incompressible flows and the magnetic divergence constraint [9].  Regarding the ∇⋅B  

calculation, we have quantitatively examined its convergence properties with the anisotropic 

thermal conduction tests of Sections 4.2 and 5.  For the ideal MHD contributions, the context is 

different ( VB ∇⋅  and BB ∇⋅ ), but the convergence properties of all spatial derivatives within 

elements follow the behavior described by Eq. (3).  The results presented in Sections 4.1 and 4.2 

provide confidence that continuous basis functions with p≥2 are satisfactory in this regard and 

that p≥3 accommodates severe anisotropy.  A unique benefit of using generic high-order basis 

functions, which are not specialized for different components of a magnetic coordinate system, is 

that convergence properties are not lost in nonlinear computations when the magnetic direction 

vector changes significantly. 

Regarding the divergence constraint and compressibility, when p≥2, the finite-element part of 

Eq. (10a) is closely related to continuous vector-field expansions that are used in two-

dimensional viscous incompressible fluid computation.  However, the error diffusion method is 

not one of the standard methods for enforcing incompressibility.  To compare the error diffusion 

method with the standard methods, consider introducing an auxiliary scalar variable in Eq. (16) 
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for the divergence error and a separate constraint equation.  In this mixed method, the magnetic 

advance now solves for bj+3/2 and X that satisfy 

 

( ) ( ) ( )

( ) ( ) **
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d  (18b) 

 

for all p,,NhBc ∈  and for all p',, NhΧ∈Ξ , where p',, NhΧ  is a finite-dimensional space for the 

additional scalar Χ.  There is no differentiation of the auxiliary scalar, so its representation only 

needs to be piecewise continuous to satisfy the requirements for a conforming approximation.  

This method can be related to the projection method of Brackbill and Barnes [9], but solving 

Eqs. (18a-b) simultaneously with a large value of λ prevents the formation of monopoles, 

whereas projection removes them after the magnetic field is advanced.  Numerical analysis of 

finite elements for steady incompressible fluid applications proves that it is possible to find 

p',,NhΧ  for continuous representations of bj+3/2 with p>1 such that the product space of 

},{ p',,p,, NhNh ΧB  satisfies divergence-stability [31, 46].  Convergence to a divergence-free 

vector field is then assured even in the limit of ∞→λ , which is comparable to taking the limit 

∞→∆ divbtκ . 

If one were to replace (18b) with the local relation 3/2j+⋅∇−=Χ bλ , substituting Χ into (18a) 

recovers Eq. (16) with λκ →∆ divbtg , but this changes the numerical character of the finite 



 

44 

element solution.  The space represented by ( ) }|{ p,,NhBbb ∈⋅∇  is not among the p',,NhΧ  

spaces that satisfy divergence-stability in combination with continuous representations 

of p,,NhB , because it imposes too many constraints [32].  If the approximation is so over-

constrained that the matrix resulting from ( )( )∫ +⋅∇⋅∇ 3/2j* bcx λd  is invertible, the physical 

terms in (18a) would not affect the solution unless λ has a small value.  The penalty method 

described in Ref. [10] uses this form of the constraint relation, but selective reduced numerical 

integration, i.e. intentionally inaccurate numerical integration, of the constraint terms ensures 

that the matrix resulting from ( )( )∫ +⋅∇⋅∇ 3/2j* bcx λd  is singular.  Ref. [47] shows that in some 

cases, reduced numerical integration is identical to using a mixed method that satisfies 

divergence-stability. 

In our time-dependent computations without selective reduced integration, poor performance 

of the error diffusion technique results from over-constraining the computation when the value of 

divbtκ∆  is chosen to be too large for a given continuous representation of magnetic field.  The 

increasing range of acceptable divbtκ∆ -values with polynomial degree (p), illustrated by the 

results shown in Fig. 7a, reflects better separation of the longitudinal and solenoidal parts of the 

expanded vector field as the number of degrees of freedom in each element are increased.  This 

increasing separation implies that the matrix from ( )( )∫ +⋅∇⋅∇ 3/2j* bcx λd  becomes singular as p 

is increased from unity, so the constraint term does not dominate the physical terms when 

divbtκ∆  is finite.   

We can also assess the longitudinal/solenoidal separation by counting the dimensionality of 

the spaces p,0,hB  and ( ) }|{ p,0,hBbb ∈⋅∇  as functions of p in a specific example:  A two-
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dimensional rectangular mesh of m Lagrange elements in each direction has (mp+1)2 nodes or 

2(mp+1)2 coefficients for an arbitrary vector field with two components, which is relevant for the 

n=0 part of our computations.  With Dirichlet boundary conditions for the normal component 

along the entire boundary as essential conditions, the dimension of p,0,hB  is then 2(m2p2-1).  

Finding the dimensionality of ( ) }|{ p,0,hBbb ∈⋅∇  is a little more complicated, because the 

subspaces of scalars from xbx ∂∂  and from yby ∂∂  intersect but are not identical.  With 

Cartesian components and the mesh aligned with the axes of the coordinate system, the scalar 

field formed by xbx ∂∂  consists of discontinuous piecewise polynomials of degree p-1 in the x-

direction and continuous piecewise polynomials of degree p in the y-direction.  In general, this 

field can be described by a nodal polynomial expansion with mp(mp+1) nodes, but the boundary 

conditions on B constrain path integrals across the x-dimension, ∫ ∂∂max
min

x
x x xbdx , so there are 

only m2p2-1 degrees of freedom.  The scalar field of yby ∂∂  similarly has m2p2-1 degrees of 

freedom.  The two discontinuous scalar fields share all polynomials that are continuous and of 

degree p-1 in both directions and that satisfy the path integral constraints in both directions.  

Therefore, the intersection is described by an expansion with m2(p-1)2 nodes.  Adding the 

dimensions of the discontinuous spaces and subtracting the dimension of their continuous 

intersection, we find ( ) }|{ p,0,hBbb ∈⋅∇  to have dimension 2p2p 2222 −−+ mmm , which is 

the number of constraints imposed when using members of this space as test functions for the 

divergence constraint.  The ratio of degrees of freedom in p,0,hB  to the number of constraint 

equations is then 
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where the approximate holds for large m.  Although this result has been derived for a special 

mesh, we expect that the large-m approximation is general.  For p=1, the approximate ratio is 

unity, making computational results very sensitive to the value of divbtκ∆ .  For p=2 and larger, 

the ratio exceeds unity, and for large p, it limits to 2, the optimal ratio in two-dimensional 

computations [32]. 

For three-dimensional computations, the constraint can be addressed separately for each 

Fourier component, because the divergence operator is linear.  Considerations for the n=0 

Fourier component are identical to those given above.  For all other Fourier components, the 

number of additional degrees of freedom due to the third dimension is equivalent to the number 

of nodes in the representation of bz, which is (mp+1)2 in the simple mesh used above.  The 

number of test functions, and hence the number of constraints, also increases.  Here, the 

derivative zbz ∂∂  is just an algebraic operation in the Fourier representation, zz Lbin2π , so 

the space of test functions includes polynomials that are continuous and of degree p in both x and 

y.  All of the possible continuous functions (of degree p in one direction and p-1 in the other) 

resulting from xbx ∂∂  and yby ∂∂  are contained in the larger continuous space associated with 

zz Lbi n2π .  Thus, the number of constraints for Fourier indices with n>0 is (mp+1)2 plus the 

number of nodes that allow discontinuity in expansions for xbx ∂∂  and yby ∂∂ , 

)11)(p(2 −+ mm .  The ratio of degrees of freedom to the number of constraint equations for n>0 

is then 
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Here, again, the ratio exceeds unity for p>1 and large m, and it approaches the optimal ratio of 3 

for three-dimensional computations in the limit of large p.  (Section 4.4 of Ref. [32] describes 

similar conclusions for quadrilateral and brick elements, but the number of constraints is 

determined by the accuracy of the numerical integration.  The ratios derived above are based on 

exact integration and the combined finite element/Fourier representation.) 

The increasing insensitivity to divbtκ∆ -values as p is increased, as demonstrated by the 

results in Fig. 7a, is consistent with what we have found above regarding the dimensionality of 

p,,NhB  and the number of constraints imposed by the divergence cleaning term.  The ratios of 

degrees of freedom for n=0 and n>0 approach their optimal values as p is increased, so we can 

expect increasing separation of expanded longitudinal and solenoidal fields.  For computations 

where the ratios are greater than unity but not optimal, selecting finite divbtκ∆ -values avoids 

over-constraining the magnetic advance.  We have found that setting 

)10(or  )1(~/ 2 OOht divbκ∆ , i.e. diffusing the error over the element dimension at each time-

step, enforces the constraint sufficiently in most of our applications. 

The numerical issues for compressibility of flow are similar to the considerations for the 

magnetic constraint.  Although the equations we solve are compressible, the anisotropies of the 

MHD system lead to very different responses between shearing and compression, and 

compressive behavior tends to equilibrate on time-scales that are fast in comparison to resistive 
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tearing behavior [33, 34].  The numerical operator L appearing on the left side of Eq. (12) 

contains the terms 
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where the first term arises from motion perpendicular to B0.  Since the coefficients can be very 

large in comparison to others in Eq. (12)—the ratio 00
2
00

2 /)/( ρµγ Bpt +∆  is the square of the 

distance traveled by the fastest wave in the MHD system in a time-step—the terms in (19) 

restrict compressibility, especially for perpendicular motions.  Since p,,NhB  and p,,NhV  share 

the same set of basis functions, the numerical arguments regarding the dimensionality of the 

space and the number of constraints are also applicable to compressibility.  However, C0 is set by 

numerical stability requirements for the semi- implicit advance, so the only freedom in 

controlling the magnitude of the compressive terms is through the ∆t-value for the time-step.  For 

example, the error displayed in Fig. 4c eigenfunction computed for the cylindrical tearing mode 

with a 32×32 mesh of bicubic elements decreases with h, but it also decreases with ∆t.  With 

reduced   ∆t, the accuracy of the semi- implicit operator is relatively less important, while 

reducing h leads to better resolution of the anisotropy. 

Regarding computational performance, the sparse direct solver library, SuperLU, has 

provided a significant improvement over iterative methods, and this is attributable to the ill-

conditioning of the matrices when ∆t is large.  As examples of current performance, the 32 × 32 

bicubic, 24× 24 biquartic, and 20 ×20 biquintic linear computations of the cylindrical tearing 



 

49 

mode considered in Section 4.1 each take approximately 2.5 s per time-step on one processor of 

a 2 GHz Intel Pentium IV-based workstation.  When the mesh is increased to 48×48 in the 

bicubic computation, it takes 9.3 s per time-step.  Running the nonlinear computation discussed 

in Section 5, which has three Fourier components and uses matrix- free iterative solves for the 

temperature advance, on the IBM-SP3 at the National Energy Research Supercomputing Center 

(http://www.nersc.gov) takes 13.1 s per step on 12 processors, 7.7 s per step on 27 processors, 

and 5.9 s per step on 48 processors. 

 
7. CONCLUSIONS 

We have described an algorithm that combines a variational spatial representation with a 

semi- implicit time-advance to achieve flexibility and accuracy for application to non- ideal MHD.  

The marching algorithm is considered a set of variational problems, and the hyperbolic character 

of the nonlinear PDE system is brought out in a sequence of complete advances.  The temporal 

and spatial techniques benefit from each other through their symmetry characteristics.  The time-

advance stabilizes the propagation of waves at large time-step by introducing an implicit self-

adjoint differential operator, and the finite element approach ensures that the matrices resulting 

in the fully discretized system are Hermitian.  Conversely, the variational approach to spatial 

discretization provides the required accuracy, and the self- adjoint semi- implicit operator allows 

us to create a variational form of the velocity-advance equation.  A more general Galerkin 

approach may be useful for treating either ion or electron flows implicitly, however. 

The benchmark cases presented in Section 4 and the nonlinear simulation presented in Section 

5 demonstrate the effectiveness of the algorithm.  The resistive tearing calculations show that a 

modest number of finite elements with p>1, sufficient mesh packing, and a large time-step can 

reproduce the subtle force balances associated with MHD anisotropy.  For example, even the 
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computation with a 16× 16 mesh of bicubic elements and ∆t=100τA, which is nearly 105 times 

greater than the limit for an explicit computation with the same spatial representation, finds a 

growth rate that is within 12% of the converged result for S=106 and Pm=10-3.  The anisotropic 

thermal conduction test in simple geometry shows that sufficient accuracy can be achieved to 

resolve parallel and perpendicular transport properties in realistic conditions without aligning the 

grid to the magnetic field; efforts to align the grid will further increase accuracy.  The simulation 

discussed in Section 5 demonstrates performance with respect to slowly growing nonlinear MHD 

activity, and the comparison between numerical and analytic results on the magnetic island width 

required for temperature profile modification confirms that the modeling of anisotropic diffusion 

in three-dimensional magnetic topologies is accurate. 

The geometric flexibility of the algorithm makes it suitable for many applications in magnetic 

confinement fusion.  The nonlinear tearing evolution illustrates conditions encountered while 

using NIMROD to simulate neoclassical tearing modes and high-beta disruptions in tokamaks 

[21, 48], where accurate anisotropic diffusion is critical.  In combination with a temperature-

dependent resistivity, the accurate modeling of anisotropic diffusion permits us to address 

nonlinear free-boundary tokamak computations, where Ohmic heating leads to large electrical 

conductivity in the region of closed magnetic flux surfaces only [49].  NIMROD is also being 

used to simulate nonlinear magnetic relaxation in alternate configurations, such as spheromaks 

[50-52] and reversed- field pinches [49, 53], where separation of time-scales tends to be less 

extreme than in tokamak plasmas, but the behavior often includes evolution to MHD turbulence.  

Although numerical issues associated with relaxation simulations have not been discussed in this 

paper, the flexibility to address many different topics with one code has been a goal since the 

inception of NIMROD development.  Additional geometric flexibility will be achieved with 



 

51 

further development of triangular elements.  (For simulating experimental configurations without 

geometric symmetry, the numerical algorithm can be implemented with finite elements in all 

three directio ns.) 

Further development of the algorithm is proceeding along two general paths.  First, we 

continue to make numerical refinements for the non- ideal MHD model described here.  We 

expect to improve the existing predictor/corrector treatment of flow with regard to accuracy and 

efficiency in extreme (but not shocked) conditions.  In addition, we will investigate selective 

numerical integration for the compressibility terms in the semi- implicit operator.  The second 

path of development concerns expanding the algorithm to solve more realistic models for high 

temperature plasmas.  The NIMROD implementation is designed to have flexibility in the 

equations that it solves, and the modularity facilitates efforts to improve numerical methods for 

more realistic plasma models.  Some development has already been completed in the area of 

two- fluid effects [7], and we are presently working to improve accuracy at the large time-steps 

needed for nonlinear fusion studies.  We are also adding kinetic effects [20-22] that have a strong 

influence on the MHD-like behavior of nearly collisionless plasmas. 

 

APPENDIX 

Several applications require simply connected, topologically cylindrical domains.  For these 

cases, we use the finite element representation for the R-Z  plane, and one side of the mesh lies 

along the Z-axis.  Physical fields and their partial derivatives must have unique values at the axis, 

which leads to a set of regularity conditions for the Fourier components in the limit of R? 0.  

The conditions are derived with a 2D Taylor series expansion of an arbitrary function of 

Cartesian x and y coordinates with origin at R=0 in a constant-Z plane.  Substituting 
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2/)( ϕϕ ii eeR −+  and ieeR ii 2/)( ϕϕ −−  for the Cartesian x and y, respectively, while leaving the 

expansion coefficients in terms of Cartesian derivatives, determines the appropriate functional 

form for each Fourier component in the limit of R? 0.  For scalars we have 
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for the finite Four ier series, where fn, n=0,1,..N are polynomial functions of their argument.  For 

vectors, we have 
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where 
nRa  and 

nϕa  are polynomial functions.  The limiting behavior of Az(R,Z) is the same as 

for scalars.  The radial and azimuthal expansions must also satisfy 

 

( ) ( )00 11 Riaa =ϕ   , (A.3) 

 

so that the vector has a unique direction at R=0. 

Since conditions (A.1-A.3) apply in the limit of R? 0, discrete representations in R need only 

consider the leading behavior for each Fourier component index.  Conditions where the 

polynomial expansion goes to zero at R=0 are applied as essential conditions on the solution 

space, like Dirichlet boundary conditions.  Satisfying condition (A.3) for n=1 vector components 
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is more complicated, since the R and ϕ components of a vector are computed simultaneously 

according to the algebraic system resulting from the weak form of the implicit terms in a given 

equation.  Our approach is to first compute the matrix elements for the coefficients of the spatial 

representation (denoted by â ) in the usual manner without considering (A.3).  Then for each 

node located on the Z-axis, we change to sum and difference coefficients,  
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in the algebraic system.  If ( )
c

M  denotes the two columns of the matrix corresponding to the 

1Ra  and 
1ϕa  elements in the algebraic vector of unknown coefficients, the variable change 

modifies these columns to 
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The number of rows of the linear system is then reduced by taking a linear combination of the 

two rows (r) corresponding to +â  and −â , 
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and the regularity condition (A.3) is enforced at the given node by setting an essential condition 

on the sum coefficient, 0ˆ =+a .  The operations are repeated for each node along the axis, and 

the resulting matrix retains the Hermitian property of the original. 

For the n=0 component of scalars, the n=0 Z-component of vectors, and the n=1 R- and ϕ-

components of vectors, the leading behavior of the polynomial expansion in R is that the slope 

vanishes in the limit R? 0.  For each equation in the time advance, this behavior is enforced by 

the respective strain energy without any modification to the spatial representation or the resulting 

linear system.  For example if the n=0 Fourier component in the expansion of Bz has a nonzero 

radial derivative at small R, computations of the n=0 part of the local Jϕ will be nonzero, leading 

to resistive diffusion or radial forces that generate flows to reduce the derivative.  The weak form 

used in the finite element approach avoids singular terms at R=0 that need special treatment in a 

finite difference or finite volume scheme, where the conditions are explicitly applied to the 

differences [29].  As another example of the finite element implementation, consider radial 

derivatives in the n=1 R-component of magnetic field near R=0.  Since the axial n=1 component 

is set to 0 on axis, and condition (A.3) is satisfied, the n=1 part of magnetic divergence reduces 

to rbr ∂∂ / , and the error diffusion term in the strain energy for the magnetic advance will tend to 

eliminate any nonzero derivative.  The conditions are realized as natural conditions, although 

there is no corresponding surface integral. 
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FIGURE CAPTIONS 

FIG. 1.  Finite element meshes illustrating (a) radial packing with piecewise bicubic mapping 

from a logically rectangular mesh of quadrilateral elements to a topologically polar arrangement 

of nodes and (b) combining regions of triangular and quadrilateral elements, using linear 

mappings, to align with equilibrium magnetic flux surfaces in a tokamak interior while matching 

to a realistic experimental cross-section at the boundary. 

 

FIG. 2.  Profiles of equilibrium safety factor or magnetic winding number ( θπ BLrBq zz2=  for 

the cylinder with periodic length Lz) (a) and normalized parallel current density (b) for the 

tearing-mode benchmark. 

 

FIG. 3.  Comparison of a NIMROD-computed growth-rate scaling for the cylindrical tearing 

mode with the asymptotic analytic dispersion relation, Eq. (17). 

 

FIG. 4.  Eigenfunctions for the cylindrical tearing-mode computed with At τ100=∆ .  Profiles are 

plotted in the radial coordinate ( Ψ ) in (a-b), where Ψ is the normalized poloidal flux function 

for the equilibrium, and in the azimuthal angle at a fixed radial coordinate just outside the 

resonance in (c-d).  Frames (a-c) show the eigenfunction resulting from a 32× 32 mesh of bicubic 

elements, whereas (d) shows the result from a 48× 48 mesh of biquadratic elements.  Boxes 

indicate the locations of element-boundary nodes. 

 

FIG. 5.  Convergence of the computed cylindrical tearing-mode growth rate with mesh spacing 

for biquadratic and bicubic finite elements with S=106, and At τ100=∆ .  The parameter h is the 
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inverse of the number of quadrilateral finite elements in each of the radial and azimuthal 

directions. 

 

FIG. 6.  Logarithm of the normalized magnetic divergence error, ( ) ∫∫ ⋅∇ 22 bxbx dda , in the 

computed cylindrical tearing-mode eigenfunctions at S=106 and At τ100=∆ , plotted with respect 

to mesh spacing for bilinear, biquadratic, and bicubic finite elements.  The exponential 

dependences, hp , expected of the error in a spatial derivative of the solution, according to Eq. (3), 

are shown for comparison. 

 

FIG. 7.  Growth rate (a) and normalized magnetic divergence error (b) in the computed 

cylindrical tearing-mode eigenfunctions at S=106 and At τ100=∆ , plotted with respect to the 

error diffusivity parameter, divbκ , for 128× 128 bilinear, 48× 48 biquadratic, and 32 × 32 bicubic 

finite element meshes. 

 

FIG. 8.  Convergence of the computed cylindrical tearing-mode growth rate with time-step for 

forward and centered approximations of the dissipation terms.  The spatial representation is a 

32x32 mesh of bicubic finite elements, and the S-value is 106.   The horizontal axis is normalized 

with the converged growth rate γ0, and the polynomial fits 

2
0

3
0

44 )(1094.4)(1054.11044.6 tt ∆×−∆×+× −−− γγ  and 2
0

34 )(1011.51044.6 t∆×−× −− γ  for 

the forward and centered approximations, respectively, have been computed with the numerical 

results from 0644.00 ≤∆tγ . 
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FIG. 9.  Error in the effective perpendicular diffusivity resulting in the anisotropic thermal 

conduction test for the indicated values of parallel diffusivity.  Results are plotted with respect to 

the (uniform) mesh spacing for bilinear through biquintic finite elements, as labeled. 

 

FIG. 10.  Steady-state distributions used in the nonlinear simulation.  The safety factor profile 

( ΨΦ= ddq , where Φ  is the toroidal magnetic flux function) is shown in (a) with boxes 

indicating element boundary locations in the topologically polar mesh.  The distribution of Ψ  

in the poloidal plane is plotted in (b) with the heavy lines indicating the locations of the q=2 and 

q=3 surfaces. 

 

FIG. 11.  Computed eigenfunction of the S=106 Pm=0.1 linear tearing mode that is unstable in the 

equilibrium shown in Fig. 10.  The poloidal projection of b is shown in (a), and isocontours of 

the toroidal component of the perturbed ideal electric field ( ssBv×⋅φ̂ ) are shown in (b). 

 

FIG. 12.  Simulated nonlinear evolution of the toroidal tearing mode.  Magnetic energy for each 

toroidal Fourier component is shown in (a), where ( ) 0
2

nn 2E µ∫ += bBss  for n=0 and 

0nnnE µ∫ ⋅= ∗ bb  for n=1,2.  The island-width evolution is shown in (b) for the magnetic island 

at the q=2 surface with bars indicating the estimated error in measuring the separatrix from 

Poincaré surfaces of section.  The analytic small-island evolution from Refs. [39, 40] with an 

estimated ∆′  is also plotted in (b).  The Poincaré surface of section for the final magnetic 

configuration is shown in (c). 



 

64 

 

FIG. 13.  Magnetic island width on the outboard side of the q=2 surface that produces an 

inflection in the temperature profile, plotted vs. the ratio of thermal diffusivity coefficients.  The 

solid line is the power- law fit of the simulation results, ( ) cm 433 237.0
||

−
⊥= χχw , and the 

dashed line is the analytic scaling of the critical width ( ) ( ) 2/1
0

4/1
|| n8 qqRWc ′≡ −

⊥χχ , where 

the parallel and perpendicular diffusion times match in cylindrical geometry [43].  The latter is 

evaluated as an approximate for the toroidal configuration by averaging drdqq /=′  from the 

inboard and outboard sides of the equilibrium; this yields ( ) cm 295 4/1
||

−
⊥= χχcW . 

 



 

65 

(b)(a)
 

 

 

 

 

 

Sovinec, et al.   Figure 1 

 



 

66 

r

µ 0
a

J ||
/B

0 0.25 0.5 0.75 1

1

1.5

2

2.5

3 (b)

r

q

0 0.25 0.5 0.75 1
0.2

0.4

0.6

0.8

1

1.2 (a)

 

 

 

 

 

Sovinec, et al.    Figure 2 

 



 

67 

+

+

+

+

S

γ
τ A

105 106 107 108

10-4

10-3

NIMROD result
CGJ dispersion relation

+

 

 

 

 

Sovinec, et al.  Figure 3.  



 

68 

θ / 2 π

V
z

(a
rb

itr
ar

y)

0 0.25 0.5 0.75 1

0

(d)

Ψ1/2

V
z

(a
rb

itr
ar

y)
0 0.25 0.5 0.75 1

0

(b)(b)

Ψ1/2

V
r
(a

rb
itr

ar
y)

0 0.25 0.5 0.75 1

0

(a)(a)

θ / 2 π

V
z

(a
rb

itr
ar

y)

0 0.25 0.5 0.75 1

0

(c)

 

 

 

Sovinec, et al.    Figure 4. 



 

69 

ln(h)

γ
τ A

-5 -4 -3 -2

5.5E-04

6.0E-04

6.5E-04

7.0E-04

biquadratic
bicubic

 

 

 

Sovinec, et al.    Figure 5 



 

70 

 

ln(h)

ln
[|

|d
iv

(b
)

||
/|

|b
||

]

-5 -4 -3 -2
-8

-7

-6

-5

-4

-3

-2

bilinear
biquadratic
bicubic

ln(h)

ln
[|

|d
iv

(b
)

||
/|

|b
||

]

-5 -4 -3 -2
-8

-7

-6

-5

-4

-3

-2

h1

h2

h3

 

 

 

Sovinec, et al.    Figure 6 (revised) 



 

71 

κdivb
||

di
v(

b)
||

/|
|b

||
10-5 10-4 10 -3 10-2 10-1 100 101

10-4

10-3

10-2

10-1

bilinear
biquadratic
bicubic

(b)κdivb

γ
τ A

10-5 10-4 10 -3 10-2 10-1 100 1011.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

7.0E-04

8.0E-04

(a)  

 

 

 

 

Sovinec, et al.    Figure 7 

 



 

72 

γ0 ∆t

γ
τ A

0 0.025 0.05 0.075 0.1 0.125
5.9E-04

6.0E-04

6.1E-04

6.2E-04

6.3E-04

6.4E-04

6.5E-04
forward
centered
fit of forward
fit of centered

 
 
 
 
 
 
 
 
 
Sovinec, et al.  Figure 8 (revised) 
 



 

73 

bilinear
biquadratic
bicubic
biquartic
biquintic

h

|χ
ef

f-1
|

0.1 0.2 0.3

10-4

10-3

10-2

10-1

100

101

χ|| = 109

h

|χ
ef

f-1
|

0.1 0.2 0.3
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103 χ|| = 106

h

|χ
ef

f
-1

|

0.1 0.2 0.3
10-5

10-4

10-3

10-2

10-1

100

101 χ|| = 103

 

 

 

 

Sovinec, et al.    Figure 9 



 

74 

 

R

Z

1 1.5 2 2.5

-1

-0.5

0

0.5

1

(b)

Ψ1/2

q

0 0.25 0.5 0.75 1

2

3

4

5

6

7

8

(a)

 

 

 

 

 

Sovinec, et al.    Figure 10 

 



 

75 

 

R

Z

1 1.5 2 2.5

-1

-0.5

0

0.5

1

(a)

R

Z

1 1.5 2 2.5

-1

-0.5

0

0.5

1

(b)

 

 

 

 

Sovinec, et al.    Figure 11 

 



 

76 

R

Z
1.5 2

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

(c)

time (s)

E n
(J

)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

10-6

10-4

10-2

100

102

104

106

n=2
n=1

n=0 + ss (a)

time (s)

w
(c

m
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.071

2

3

4

5

6

7

simulation
w(t)=1.22η∆' t+w(0)

(b)

 

 

 

 

Sovinec, et al.    Figure 12 

 



 

77 

 

χ|| / χperp

w
(c

m
)

108 109 1010

1

2

3

4

5

6
7 sim. data & fit

analytic Wc

 

 

 

Sovinec et al.    Figure 13 

 


