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A conforming representation composed of two-dimensiond finite elements and finite Fourier
series is applied to three-dimensional nonlinear norrideal magnetohydrodynamics using a semi-
implicit time-advance. The sdlf-adjoint semi-implicit operator and variational approach to
spatial discretization are synergistic and enable simulation in the extremely stiff conditions found
in high temperature plasmas without sacrificing the geometric flexibility needed for modeling
laboratory experiments. Growth rates for resistive tearing modes with experimentally relevant
Lundquist number are computed accurately with time-steps that are large with respect to the
global Alfvén time and moderate spatial resolution when the finite elements have basis functions
of polynomia degree (p) two or larger. An error diffusion method controls the generation of
magnetic divergence error. Convergence studies show that this approach is effective for
continuous basis functions with p=2, where the number of test functions for the divergence
control terms is less than the number of degrees of freedom in the expansion for vector fields.
Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity

(c/cn ) is computed accurately with p=3 without mesh alignment. A simulation of tearing

mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the
algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical

anisotropic thermal conduction in three-dimensional magnetic topologies.
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1. INTRODUCTION

High temperature magnetized plasmas are characterized by extremely anisotropic properties
relative to the direction of the magnetic field. Perpendicular motions of charged particles are
constrained by the Lorentz force, while relatively unrestrained parallel motions lead to rapid
transport along magnetic field lines. The orientation and distribution of fluid-like motions of the
electrically conducting plasma then determine the degree of restoring force arising from the
bending and compression of nagnetic flux tubes. When collective motions are able to avoid
these restoring forces while releasing available free energy, magnetohydrodynamic (MHD)
instability results. As an unstable perturbation grows to finite amplitude, it may induce a
nonlinear evolution of the system that includes significant (and sometimes catastrophic) changes
in thermal energy and particle confinement. The behavior is often complex, so that analysis
must rely on simulation, but the large anisotropies relative to the distorted magnetic field present
challenging conditions for numerica methods. For example, numerical truncation errors
associated with rapid paralel thermal conduction produce artificial heat transport that leads to
qualitative errors in the simulated energy confinement when using low-order representations.

The anisotropies also lead to a wide range of time-scales for different physical effects. For
typical conditions in magnetically confined plasmas, parallel thermal conduction is the fastest
process in the system. Alfvénwave propagation occurs on a longer time-scale, followed by
sound-wave propagation. Perpendicular thermal conduction and particle diffusion occur on
longer time-scales, and global magnetic field diffusion (from nonzero resistivity) is the slowest
process. Topology-changing magnetic reconnection occurs on a hybrid time-scale between
Alfvénic propagation and global resistive diffusion, and the associated subsonic flows are nearly

incompressible, so numerical simulation of this behavior must deal with extreme stiffness



resulting from relatively fast wave propagation and parallel thermal conduction. Simulating the
behavior of the system is therefore related to various aspects of the numerical smulation of
electromagnetics, incompressible fluid dynamics, convective heat transfer, and linear ideal
MHD.

Numerical resolution of magnetohydrodynamic anisotropy leading to singular behavior in
ideal conditions has been achieved in linear computations by using speciaized low-order
discretization methods.  These methods require solving the displacement vector in covariant and
contravariant components with respect to a fixed magnetic-flux coordinate system, aligning the
numerical mesh with the equilibrium magnetic field, and using different finite element basis
functions in the paralel and perpendicular directions [1, 2]. For nonlinear simulation, this
approach is less compelling. Nonlinear evolution often forms regions with distinct magnetic
topology, such as helical idands or regions of magnetic stochasticity embedded in nested flux
surfaces. Either occurrence would present formidable challenges for 1) an adaptive meshing
algorithm to preserve aignment with the complicated magnetic field and 2) an arrangement of
particular basis functions to match the adaptive mesh. Furthermore, a basis function expansion
tailored to a particular set of equations may not be suitable for other physical models. For
example, discontinuous finite element representations of velocity field components cannot be
applied to a system with viscous dissipation without resorting to non-conforming or more
complicated mixed approximations. Since closure relations for fluid models remains an active
area of research in plasma theory, a specialized discretization will have limited usefulness for a
simulation code that is intended to have flexibility in the equations that it solves.

An alternative is to use a numerical representation that has a high rate of spatial convergence.

While a number of high-order approximations are possible for simple configurations, the ability



to represent a realistic geometry is important for analyzing laboratory data. High-order finite
difference methods therefore have limited applicability, and the nonlinear character of high-order
finite volume methods [3] (designed for accuracy with discontinuous solutions) is not suited for
conditions where tiff linear behavior and resolution of narrow dissipation layers is important.
The finite element method provides a better approach for nonlinear fuson MHD, where
dissipation terms ensure smoothness with sufficient resolution. The convergence rate realized by
the finite element method is then controlled by the degree (p) of the polynomial basis functions,
relatively independent of geometry and mesh spacing irregularities. In addition, a general finite
element implementation can achieve convergence by increasing p with a fixed mesh [4], which
congtitutes a spectral method.

Applying the finite element method to time-dependent systems leads to separate variational
problems for each equation in a marching algorithm if the implicit terms are based on sdlf-
adjoint differential operators. Here, standard analysis can be used to estimate convergence with
respect to mesh spacing when the representation satisfies two conditions: First, the space of

piecewise polynomials (S, of degree p must be composed of admissible functions, which in our

application means that the functional isfinite for al finite-valued functionsin S, and that S, only
includes functions that satisfy the Dirichlet boundary conditions. Second, the explicit terms in
the marching agorithm, i.e. the ‘data’ for each variationa problem, must remain sguare
integrable functions throughout the evolution. (Chapter 1 of Ref. [5] provides a concise

mathematical background.) Given these conditions, the analysis tells us that the finite element
solution (T) to a variational problem is the function in §, with the least ‘strain energy’ error [5],

i.e
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where u is the best solution among all admissible functions. Then, knowing that the finite
element solution is a better approximation in terms of the strain energy than the interpolate

function, whichisalso in S,, we eventually arrive at relations for convergence rates [5],
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where h characterizes the possibly irregular mesh spacing, s is the norm of the s-th derivative

of u, and Ky and K, are independent of h. [The estimates (2-3) are for the relevant special case

of second-order partial differential equations.] For atime-advance that solves for different fields
sequentially, there is a unique strain energy for each equation, and the set of minimization
problemsis solved at each time-step.

While the finite element representation allows high-order accuracy without restricting
geometry, it introduces other challenges. Besides implementation complications, it is well
known from incompressible fluid modeling that continuous finite element representations of
vector components cannot reproduce a divergence constraint exactly. Furthermore, ensuring
convergence to a divergence-free space requires specia attention. For plasma modeling, this
issue arises with the zero- magnetic- monopol e constraint and with nearly divergence free velocity

distributions associated with many unstable MHD modes. A straightforward approach for

approximating the magnetic divergence constraint is to add the diffusive term k 4, ,NN 8 to



Faraday’s law [6-8]. This leads to a method that is related to divergence cleaning techniques for
finite difference and finite volume methods [9] and to penaty function methods for finite
elements [10].

Here, we report on this application of the finite element method to nonlinear nornideal MHD,
and its implementation in the NIMROD code (Nortldea Magnetohydrodynamics with Rotation,
Open Discussion) [7]. The objective of the NIMROD project [http:/nimrodteam.org] is to
achieve accurate and flexible modeling of nonlinear electromagnetic activity in computational
domains that are redlistic for a variety of laboratory plasmas. Unlike most previous efforts for
nonlinear modeling of high temperature plasmas [11-14], we have avoided gpatial
representations that restrict the geometry in the poloidal domain. The present NIMROD
implementation has the parameter p selected at run-time, which is more genera than either the
finite element implementation reported in Ref. [15] or the earlier NIMROD implementation [7],
which used linear and bilinear elements only. This feature has proven useful for exploring the
performance of different basis functions in actua applications, and our findings confirm that
using p>1 is essential for modeling anisotropies and for satisfying the magnetic divergence
constraint. We have restricted our attention to periodic configurations with a two-dimensional
boundary, so the finite Fourier series representation with pseudospectral computations of
nonlinear terms [16] is applied.

The separation of time-scales in high temperature plasmas is manifest mathematicaly as
gtiffness in the nonideal MHD model, and this is an equally important consideration for
numerical simulation. The dominant part of the stiffness can be described through the linear
properties of the system at any given time, since propagating shocks do not occur on these slow

time-scales. The stiffness makes explicit methods impractical, but semi-implicit methods [17,



18] are well suited for these conditions. The semi-implicit operator considered here is based on
the linear ideal MHD energy integral, as recommended in Ref. [13], but the symmetric
component of the solution’s Fourier expansion is incorporated into the equilibrium fields.
(Geometrically, we use “symmetry” with respect to the periodic coordinate, e.g. the toroidal
direction for toroidal geometries, which is represented by the finite Fourier series. However,
“symmetry” is aso used in the mathematical context of symmetric matrices.) In addition, the
Laplacian operator used for stabilizing nonlinear pressures has a dynamic coefficient that
depends on the nonsymmetric part of the solution. This approach makes the agorithm suitable
for simulations where the fields evolve significantly from their initial equilibrium configuration,
while retaining the accuracy reported in Ref. [13]. Furthermore, since each advance in the
marching algorithm has a self-adjoint operator for itsimplicit terms, and positive eigenvalues can
be ensured, the requirements for a variational approach to spatial discretization are met. In many

cases, there is no implicit dependence among Fourier components, so the resulting algebraic
systems have sparse matrices. For equations that have implicit coupling in al three directions,
the Fourier representation leads to an algebraic system that includes convolutions among Fourier
components.

The NIMROD code has been written for paralel computation on distributed- memory
computers with communication routines from the Message Passing Interface (MPI) library
(http://www.mptforum.org). Standard mesh decomposition techniques with point-to-point
communication work well for the finite element representation of the poloidal plane, where
overlap of basis functions is local. Coupling in the periodic direction occurs through Fast
Fourier Transforms (FFTs) and algebraic operations on a uniform grid over this coordinate.

Here, swapping from Fourier-based decomposition to spatialy based decomposition via



collective communication is used to maintain scalability. Computationally, the most demanding
part of the algorithm is the solution of the linear systems. A recent change in the NIMROD code
is the use of the pardld, distributed memory version of the SuperLU software library
(http://acts.nersc.gov/superlu/) to apply sparse direct-solve methods to the systems that do not
have Fourier convolutions. For the systems with coupling among Fourier components,
NIMROD has a matrix- free conjugate gradient solve that calls SuperLU routines to invert sparse
approximations of the complete matrices as a preconditioning step.

The organization for the remainder of this article is as follows. Section 2 describes the
magnetofluid equations solved by NIMROD, and Section 3 presents the discretization techniques
that have been applied. In Section 4, we use a resistive linear MHD benchmark to show
convergence properties in stiff conditions and to demonstrate performance with respect to the
divergence constraint. We also present NIMROD results on a quantitative test of anisotropic
therma conduction. A sample nonlinear ssimulation that brings together MHD stiffness and
anisotropic energy transport is presented in Section 5. In Section 6, we further discuss the
properties of the algorithm that are observed in the test results and make comparisons with ided
MHD eigenvalue computation and incompressible fluid modeling. Conclusions are given in
Section 7. The Appendix describes our implementation of regularity conditions for simply

connected (topologicaly cylindrical) configurations.

2. EQUATIONS
Resistive MHD is the simplest model capable of reproducing global electromagnetic behavior
observed in many laboratory and natural plasmas. For long timescales, where important

nonlinear evolution occurs, it is often necessary to include diffusion and conduction terms, since



transport processes act on similar time-scales. The nonrideal model considered in this paper is
resistive MHD with anisotropic thermal conduction, kinematic viscous dissipation, particle
density diffusion, and the numerical diffusion of magnetic divergence error. Separating terms

that represent a steady solution (denoted by the “ss” subscript), this norrideal MHD modd is
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where E is the electric field, B is the magnetic induction, V is the particle flow velocity, q isthe
heat flux vector, Q is athe heat source density, and g is the ratio of specific heats. The units are

MKS, except that the Boltzmann constant has been absorbed into temperature. The particle

number density n and mass density r are related through the mass per ion (m), and total pressure

and temperature follow the ideal gas relation, p = 2nT , assuming quasineutrality (ne @y =n)
and rapid thermal equilibration among ions and electrons. Equations (4a-f) represent the
modified Faraday’s law, the resistive MHD Ohm'’s law, the low-frequency limit of Ampere's
law, particle conservation, flow velocity evolution, and temperature evolution, respectively. The
particle diffusion term is necessary for simulations over transport time-scales, where physical
effects beyond MHD influence the number density profile. Its implementation is only
phenomenological, because the particle flux should be consistent with the product of the number
density and the flow velocity. Finding a better representation of the particle transport is
important, but it is beyond the scope of the present effort.

The steady-state terms make the system of equations suitable for nonlinear computations of
deviations from a time-independent solution of the same physics model. We note that this is
conceptually similar to linear MHD stability analysis of a solution to the force balance equation
(J° B=Np), but linear MHD is often used to analyze equilibria that evolve on transport time-
scales. In contrast, computations of nonlinear perturbations over long time-scales require steady
state fields that are time-independent solutions of the complete system. For example, the steady
state may have nonzero electric field (- V™ BgthJg * 0), but it is assumed to be curl-free
and is not computed with the terms in Eg. (4b) that influence the evolution of the perturbed
magnetic field through Eq. (48). Separating steady-state terms in the equations adds complexity

to the coding, but it improves numerical accuracy in simulations where the perturbations are
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small relative to the steady part of the fields [14]. There are also practical benefits for analyzing
MHD activity. Fitting equilibrium MHD solutions to data from laboratory measurements is now
common experimental practice. Solving the nonlinear evolution of perturbations about a fitted
equilibrium provides a powerful analysis tool without the need for complete information
regarding the sources that sustain the equilibrium profiles of current, plasma flow, interna
energy density, and particle density. Since NIMROD assumes a domain that is symmetric in the
periodic coordinate, only symmetric steady-state fields are considered. The perturbed fields are
fully three-dimensional, however.

Thermal transport in Eqg. (4f) can be modeled as local anisotropic diffusion with separate

coefficients for the parallel and perpendicular directions[19],

q=- n[c"66+cA (I - 66) NT (5

where b ° B/|B| is the local magnetic direction vector—terms for the separated steady state

fields have been suppressed for clarity. In high temperature plasmas, ¢; may be many orders of

A~

magnitude larger than ¢, which presents numerically challenging conditions when b is not
aligned with the mesh (see Section 4.2). The source term Q in (4f) represents the sum of Ohmic
(hJZ) and viscous br RvT NV) heating.

The boundary conditions considered here for Egs. (4af) are Dirichlet conditions for the

normal component of B, for T, and for al components of V along the bounding surface. For the

tangertial component of B and for n, fluxes are specified as natural boundary conditions via

12



surface integrals in the variational form of the equations. Here, the respective flux densities are
(A" E) and (DNN).

The model represented by Egs. (4a-f) can be extended to include two-fluid effects, nonlocal
effects of rapid particle streaming at arbitrary collisionality [20], neoclassical effects [21], and
ion kinetic effects [22] that are al important for the dynamics in many high temperature plasmas.
The spatial representation described herein provides a basis for the numerical development of

these advanced models, in addition to its utility for the non-ideal MHD model.

3.NUMERICAL METHODS

3.1. Time-Advance

The numerical approach we have used for Egs. (4a-f) combines the solution efficiency of a
semi-implicit time advance with the geometric flexibility and accuracy of a genera finite
element method for spatial representation. We arrive at our numerical system of equations by
first applying temporal discretization to Egs. (4af). The velocity field values are defined at
integer time indices, whereas the remaining fields are defined at half-integer time indices. This
creates a legp-frog scheme, and the semi-implicit operator is used in the velocity advance to
eliminate time-step restrictions associated with oscillatory behavior. The stabilizing truncation
error in this agorithm is dispersive but not dissipative [23], which is an important consideration
for simulating conditions where the physical dissipation terms are small.

Our semi-implicit operator consists of two parts, asin Ref. [13]. The first includes terms that
stabilize wave propagation about the symmetric fields, and the second part is a ssimpler term that
stabilizes wave propagation when a significant nonsymmetric component of the solution

develops. The first part is derived from the method of differential approximation [24] by
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considering the ideal portion of the system, which describes oscillatory behavior and ideal linear
MHD instabilities. After removing the dissipative and heating terms, the temperature and

continuity equations are equivalent to the adiabatic pressure relation,

ﬂ—p:-V>Np- gpN®v .

qit

Thus, the differential approximation technique is applied to the idea equations for pressure,

magnetic field, and flow velocity.

Applying the approach of Ref. [24] for generic wave equations, the differential approximation

of an implicit numerical time-advance for the linear ideal MHD equations is

mw é1 , Bo. ., B ~ﬂpU 1 /. .\, , ~
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It et It o

where q is the centering parameter (O£q £1) and V @0 is assumed so that By, Jo, and py

satisfy the static force balance equation, Jo~ By =Npg. Differentiating Eq. (68) with respect to

time and eliminating B and p produces the wave equation,
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where L is the sdlf-adjoint linear ideal MHD force operator,
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The wave equation (7) can also be expressed as the system
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For oscillatory modes, the eigenvalues of L are negative, so that the - q 2Dt2L(1]V / ﬂt) term on

the left side of (9a) effectively adds wavenumber-dependent inertia, while the 2thL(V) term on
the right side introduces dissipation [24]. For growing modes, the eigenvalues of L are positive,

but there is a finite maximum eigenvalue [25].
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As discussed in Ref. [24], we may devise a numerical scheme based on the aternative
differential approximation, Egs. (9ac). First, we use the freedom to drop the Dt terms on the
right side of (9a) before discretizing (the equations remain consistent with ideal linear MHD in

the limit of small Dt) to avoid numerical dissipation in stable modes. We then stagger B and p in

time from V to obtain a leap-frog scheme that is numerically stabilized by the - Dt2L operator,
which acts on changes in V. The resulting method is ssimilar to the semi-implicit methods
described in Refs. [13], [17], and [18], where al fields are predicted and then corrected, resulting
in some level of numerica dissipation. Here, the leap-frog aspects are more closely related to
the method described in Ref. [23], where a von Neumann stability analysis for homogeneous

equilibria shows that the magnitude of the numerical amplification factor for the stable modes of

L is unity, i.e. free of numerica dissipation, as long as the q2 coefficient (denoted C,,

henceforth) is at least 1/4. For unstable physica modes, the scheme correctly reproduces
growth, but Dt must be less than the inverse of the growth rate of the fastest mode to avoid a
singularity in the time-derivative terms.

Two modifications of this operator are applied to improve its effectiveness for nonlinear
simulations. First, we relax the definition of L to include the symmetric part of the solution, in
addition to the steady-state fields, in Bg, Jg, and pg, SO that the eigenvectors of the operator
correspond closely to the linear modes of the system, which is important for accuracy [23], for
al time. Though the combined fields may not be in static force balance, in practice they usually
represent a state that is near equilibrium, and the operator can be symmetrized explicitly in its
weak form. The second modification, which accounts for the second part of the semi-implicit

operator, is to include the isotropic Laplacian operator with a small coefficient to ensure stability
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as geometrically nonsymmetric pressures develop in nonlinear simulations. The coefficient is

computed dynamically from the ‘nonlinear pressure’,

B2(R,Z)

o (R.2)° ma B B2 ) (2 )- = k)

j il

which determines the largest variation in the magnetoacoustic wave speed due to asymmetriesin
j , the periodic coordinate. This semi-implicit approach is closely related to the one discussed in
Ref. [13], but the dynamically updated coefficients provide an operator that adapts as fields
change in time. Updating coefficients with the evolution implies re-computing matrices and
their factors, but thisis done on an as-needed basis rather than at every time-step.

In addition to wave propagation, the time advance agorithm must address the numerical
aspects of advection. For magnetically confined plasmas, we usually encounter flow speeds that
are significantly less than the largest wave speeds, so limiting the time-step to satisfy the
Courant-Friedrichs-Lewy condition [26] is not prohibitive in many cases of interest. The semi-
implicit agorithm can be combined with predictor/corrector steps to stabilize flow without
introducing low-order numerical dissipation associated with wave propagation [27]. The
complete marching agorithm is comprised of a sequence of operations that is symbolically

described by
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AV( J+1/2 j+l/2,Bj+1/2;Vj) N Vpre
Av( U2 U2 g2 Vpre) Lyt
An(Vj’fl, nj+1/2;nj+1/2) e

An(VJ+1, nj+1/2;npre) Ly ni+32
AT(\/J+1,nj+3/2,-|-j+1/2’Bj+1/2;-|-j+1/2) o Ty
AT(\/J+1,nj+3/2’-|-j+1/2,Bj+1/2; Tpre) T2
AB(\/J+1,Bj+1/2; Bj+1/2) - Bye
AB(\/J+1,B]'+1/2; Bpre) — BI*32

where superscripts denote the time-level for each field (tj = jDt for congtant-Dt computations and

g2 = ¢ 4 Dt/2), and the “pre” subscript denotes a prediction. The last argument of each

operation indicates whether advective terms (such as - rV:NV that appears in A) are

computed from the solution at the previous time-level for a predictor step, or from the predicted
field for a corrector step. [Details for each advance are provided below in Egs. (12-15).] The
choice of predictor/correct advection over upwind methods ssimplifies the implementatio n with
the finite element representation.

Advancing the semi-implicit leap-frog scheme with predictor/corrector advection requires the
solution of algebraic systems for each advance in the marching algorithm. Besides the semi-
implicit operator, which is part of the A, operation, the spatial representation described in
Section 3.2 leads to mass matrices, and dissipation terms are computed implicitly. Using
implicit dissipation is particularly important for thermal conduction, where parallel transport is

typically the fastest behavior in the system. Wave propagation is also much faster than nonlinear
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tearing behavior. Consequently, the matrices in for advancing velocity and temperature are ill
conditioned. These linear systems must be solved with sufficient numerical precision to
accurately reproduce eigenvectors associated with small eigenvalues, since they represent the
dow and physically relevant behavior. In the other equations, the implicit dissipation terms
typically have small coefficients and introduce no computational penalty, since the mass

matrices already necessitate solution of algebraic systems.

3.2. Spatial Representation

A finiteedimensional spatial representation is achieved through a basis function expansion and
aweak form of the marching equations that is equivalent to a collection of variationa problems.
The choice of basis functions and the selection of physical fields to expand are central issues for
this approach. Using 2D Lagrange-type finite elements enables representation of arbitrarily

shaped regions of the poloidal plane, and the resulting solution space automatically provides the

level of continuity required for a conforming approximation of the nonideal MHD equations, (4-
5). For the remaining direction, which is periodic, the finite Fourier series is an appropriate
expansion. We express the collection of variational problems in cylindrical coordinates RZ, )
for toroidal and cylindrical geometries or in Cartesian coordinates (x\y,z) for straight
configurations with a periodic z-coordinate. Nonuniform meshing in the physical poloidal
coordinates (R,Z or x,y) is accomplished through mappings from element coordinates [5].
Choosing flow velocity, magnetic field, particle number density and temperature as the fields

to expand, our finite-dimensiona solution space & n,p) IS the product space composed of all
functions vi Vpnp, BT Bpynps, NI npnp, and TT Ty, that satisfy the essential

conditions for the system, i.e. the respective Dirichlet boundary conditions discussed in Section
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2. The subscripts denote the measure of the poloidal mesh spacing (h), the largest Fourier index

(N), and the polynomial degree of the finite element basis functions (p). These parameters

identify a particular space S, np from the family of all such spaces. Members of the Vi, p and

Bh,N,p SPaces have the expansion

Ah,Np (Rzj)=4 8jv,n=0aivn=0 *+ a (aivna_ivn +a:vna_iim) , (10a)

i,V i,v,n

while members of npn p ad T N p have the expansion

Fonp(RZ ) =& fincodinco+ & (firin+ t1al ) | (100)
i

i,n
The vector and scalar basis functions in Egs. (10a-b) are
&ivn ° & )y i(xax2) explin ), and (118)
ain °yikex2)explin ), (11b)

wherey ; isthe i-th 2D polynomia basis function of degree p in the element coordinates x; and

Xo. The Fourier components have indices n=0,1,...,N, and the direction vectors have n=RZ,j for
cylindrical coordinates or n=x,y,z for Cartesian coordinates. Henceforth, a subscripted capital

like Vin,p denotes a function space of the form (10a) or (10b) that is characterized by h, N, and

20



p, whereas the small-case v denotes an individua function in VN ; an exception is made for
temperature functions (T) to avoid confusion with time.

Theinverse of the transformation R(xl,x2), Z(xl,xz) within each finite element isimplied in
Egs. (10a-b). For many simulations, we use a topologically polar mesh of quadrilateral elements
(for example, see Fig. 1a), where the left side of the logically rectangular mesh is mapped to the
(R2) coordinates of the magnetic axis of the steady-state fields. In cases with relatively uniform
mesh spacing, we define the transformation with bicubic splines of Rand Z in global mesh
coordinates that coincide with the local element coordinates within each quadrilateral element,
except for an offset that is unique to each element. For bilinear and biquadratic y ;i (p=1,2,
respectively), this mapping is superparametric, i.e. the mapping is of higher order than the
representation of the solution fields, and a sufficient condition for convergence is not met [5].
However, for simulations with smoothly varying mesh gacing, we find better accuracy than
with lower-order mappings for the same mesh. We also expand the steady-state fields with
bicubic splines in these cases. The cubic splines are susceptible to overshoot with strong mesh
packing, however, because derivatives with respect to the logical coordinates change abruptly.
Where strong mesh packing is applied, we use isoparametric mappings for Rand Z, and the
steady-state fields are interpolated with polynomias of the same degree in the element
coordinates.

The physical coordinates in Egs. (10ab) have been expressed as cylindrical coordinates for
toroidd and cylindrical geometry. Taking R® x,Z® y,j ® 2pz/L, makes the
representation suitable for computing in Cartesian coordinates where boundary conditions at z=0
and z=L, are periodic. Terms involving derivatives with respect to the periodic coordinate and

those resulting from cylindrical curvature have been coded to alow computation with either
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coordinate system. The implementation of regularity conditions for cylindrical configurations
(where the domain includes R=0) is discussed in the Appendix.

Using test functions from the same space as the solution fields,
{Wj,cj+”2,qj+1/2,Qj+1/2}T ShN p- Produces a Galerkin approximation that is equivalent to a
variationa problem for each step in our time-advance. Starting with flow velocity, denoting with

Dv either the predictor increment Dve Or the corrector increment Dvg, and suppressing the

steady-state fields for smplicity, we find Dv1 Vi N,p that satisfy

e j+uzw*m+com2%m' (w* " Bo)x" (Dv" Bo)+gpo (R w*)([ xOv)
| € N

2
_ G w*xy” KN (Dv” Bg)+Dvxdg” N (w* Bg)

CoDt? [/ . N .
0= [(Risw *)Dv xpg + (R xDv)w * Ko ]
2 (12)

+ Cypy D2 (Rw *)T - (NDV) + gD 1 7Y% (Riw *)T - (RiDv) g

+

=ik Dt - 1ty >(V><N\7)+iw*>(N' bjwz)' pi*/2
7 My

- wr Rl tY2 12 (R )T :(ij) g

forall wi Vi, p- Thenew flow velocity isthen vI*1=v+Dvey,. In(12), p**? s treated
as a nodal quantity, i.e. coefficients of A2 and T2 are multiplied and pjﬂ/2 is interpolated

from the resulting product coefficients. In addition, the predictor/corrector advection usesv = v

for the predictor step and V = vi+f Dv e for the corrector step with the centering coefficient f.
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The parameter g is used to control the temporal differencing of the dissipation terms, and we

consider implicit differencing with 0.5=g=1. For particle number density, we have
gsix fa* Dn + DgD (g *) N ) = eaix | (g ) s *2 - D (R )¥ni*2)} (a3

for dl qi nyNp, Where m=n"Y2 for the predictor step and m=n*Y2+ ¢ Dy for the

corrector step. For the temperature advance, we have

i | —2—Q* DT + gDt (NQ*)>n|c,bb + . (I - BB )|\ DTy
ig-1 : b
= oo Dti- —gle*vjﬂxN'T- nTQ* Rixv 1+ (14)
-

- (NQ*) >4”I[C||66+CA(I - 66)])4<|Tj+1/2 +Q*Q g
foral QI T Finaly, for the magnetic advance, we have

aix § Db+ gDt (7 ¢*) {1 Db) + gDtk gy (e )(® ><Db)g
1 o}

|
— (\ﬂx Dti (N' C*)>(Vj+1' B)- %(N' C*)>N' bj+1/2 - kdivb(N >C*)(N >‘bj+1/2)z (15)

|
- Dteds™ Exc*

fordl ci Bh,N,p » Where the surface term represents the influence of an applied electric field.

The semi-implicit operator occupies most of the left side of Eq. (12), and it includes the

Laplacian part for stabilizing wave propagation in geometrically nonsymmetric states arising
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from nonlinear dynamics. For conditions of interest, p, << B3 / My +9 P, and accuracy is not

sengitive to the value of C, if it is large enough (Cp 3 1/4) for numerical stability. The terms

with coefficient CODt2/2 result from the ideal MHD operator L defined in Eq. (8), but they are
symmetrized explicitly for conditions where the Qsubscript fields are not in equilibrium, as
discussed above. Symmetrizing ensures that the semi-implicit operator has real eigenvalues,
since the finite element method then produces a Hermitian matrix by construction. 1f Dt does not
exceed the inverse of the growth rate of the most unstable mode of the ideal MHD system, the
resulting matrix is also positive-definite. This condition can aways be satisfied in initial value
computations, and it certainly will be in atemporally converged calculation.

The forces on the right side of Eq. (12) are computed from separate nodal fields for B and p,
unlike the stabilizing corrections to these forces that appear through the semi-implicit operator.
To our knowledge, the disparate representation of implicit and explicit terms does not have
negative consequences; though, it does affect convergence (see Section 6). Early versions of the
NIMROD algorithm were based on von Neumann analysis of the differencing equivalent b
using bilinear finite elements [7, 28]. We found that the numerical dispersion relation for waves
in an infinite uniform equilibrium has the shear and compressional branches decoupled to all
ordersin h and Dt when velocity and magnetic field are discretized; this could not be achieved
for formulations based on currents and potentials. Thus, the impact of the inconsistent
representation of implicit and explicit terms is strongly dependent on how the system is
formulated. (In contrast, second-order operators in finite difference and finite volume methods
are usualy constructed from first-order operators, avoiding inconsistency. However, preserving

the symmetry of complicated operators like L in general geometry is difficult.)
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Nonlinear terms and coefficients that depend on j require products of Fourier series
expansions. We apply a pseudospectral method [16], using the Fast Fourier Transform (FFT) to
find data on a uniform grid over the periodic coordinate; however, the Fourier representation is
padded with zero coefficients at high wavenumbers to prevent aiasing from quadratic
nonlinearities [29]. Algebraic operations are performed on the periodic grid to construct the
needed terms, followed by a transform of the result to obtain its Fourier decomposition. To
alow computations involving spatial derivatives of the expanded fields (like NT), the
transforms and pseudospectral computations are performed at the quadrature points for
numerical integration. The appearance of | -dependent coefficients in the left sides of the
equations, like the mass density in the flow velocity advance and the magnetic direction vector in
the thermal conduction of the temperature advance, leads to convolution matrices that are dense
in the Fourier component index. We solve these systems with a matrix- free iterative method, in
order to use FFTs in a direct computation of the matrix-vector product, instead of computing
convolutions explicitly. For magnetic fusion plasmas, the nonsymmetric (n>0) Fourier
components of r are small and do not have a significant effect on the flow velocity evolution
equation, (4e). The option of dropping the associated small terms expedites computation, since it
allows solving N independent 2D linear systems for each velocity update instead of solving one
coupled 3D linear system.

The mathematical symmetries that exists in the weak form of the temporal advance and the
caveat that Dt is small enough so that all eigenvalues of the left side of Eqg. (12) are positive

imply equivalence between Egs. (12-15) and a set of variational problems. Furthermore, the
solution space S,n,p is admissible, because all terms on the left sides of Egs. (12-15) are

integrable and the essential conditions are enforced. The representation is therefore a
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conforming approximation, and we can identify the left side of each of Egs. (12-15) as the
respective strain energy. We then expect spatial convergence rates that increase with the
polynomia degree of the basis function, p, according to Egs. (2-3). However, the terms on the
right sides of Egs. (12-15) are produced during the course of the temporal advance. If a
calculation tends to create fields that cannot be resolved smoothly, assumptions used in deriving
the convergencerate relations are violated, and globally high-order discretization is not
effective. Adaptive techniques, such as the hp finite-element method [30], may be better suited
for these conditions. For high temperature plasmas, numerical accuracy requires resolution of
the smallest spatial features (tearing layers), so we restrict attention to parameters where all
length-scales can be resolved.

The numerical treatment of the magnetic divergence constraint is another central issue for

accurate smulation. Re-expressing Eq. (15) as

Cﬁx:, c* $lt32 +thL(|§I ’ C*)X(N’ bj+3/2) +gDx kdivb(ﬁI >C*)(N >‘bj+3/2) v
i m (16
:Dtde(N’ C*)X(VJ+1, B) - ut‘fjsl E xc*

for al cl Bh,N,p shows that Dtk 4ivp has the role of a Lagrange multiplier for the constraint

o 2 -
(N 13 2) =0 in the variational problem for bJ+3/2, provided that g?0. If it were necessary to

use arbitrarily large values of the product Dtk gjyp, our continuous solution space By, N,p Would

not approach a meaningful divergence-free representation in the limit of h® 0, because the
formulation does not satisfy divergence-stability (see [31] and references therein). As described

below in Section 6, the lack of divergence-stability in this case results from imposing too many
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o L 2
constraints through the numerical calculation of (N i+ 2) for the finite number of degrees of

freedom in the space [32]. Alternatively, if the value of DtK i, is too small, the constraint is
not imposed. In either limit, the ‘strain energy’ represented by the left side of Eq. (16) is a poor
norm for choosing the best available solution. For time-dependent problems like the ones
considered here, arbitrarily large values of Dtk g, are not required, to control the generation of

error per time-step is controlled. The convergence studies presented in Section 4 show that
acceptable results are achieved routinely for basis function with p=2.

Regarding practical considerations, the poloidal mesh is divided into structured blocks of
quadrilateral elements and unstructured blocks of trianguar elements (see Fig. 1b). This
organization facilitates domain decomposition for paralel computation and adds geometric

flexibility. At this time, the implementation of triangular elements in NIMROD is incomplete
(the y; in triangular elements are restricted to linear basis functions), so the results described

below consider computations with quadrilateral elements only.

4. BENCHMARKSAND CONVERGENCE RATES
The performance of a numerical algorithm for magnetic fusion applications should be
examined in conditions that are sufficiently stiff and anisotropic to represent laboratory plasmas.
Since stiffness associated with the rapid propagation of MHD waves arises primarily from linear
terms, the linear resistive tearing mode described below is an important benchmark for large
time-step performance. The highly localized nature of the eigenfunction also exercises the
treatment of magnetic field divergence error and nonuniform meshing. The second test problem,

presented in Section 4.2, provides a quantitative benchmark of anisotropic thermal conduction.

27



4.1 Linear Tearing Mode

The domain for our resistive MHD benchmark is a straight cylinder with periodic ends. For a

sdlected helical perturbation (~ €™ 2PN2/Lz \yhere m and n are fixed integers, and L, is the
cylinder length), there exists a concentric cylindrical surface within the domain where the
perturbation has constant phase along the equilibrium magnetic field lines, which lie within the
surface. The linear MHD response to the perturbation is a resonance (due to anisotropy) such
that flows will be loca to this surface. However, resigtivity, inertia, and viscosity prevent
singular behavior by smoothing spatial scales that are small relative to global length-scales. We
have chosen cylindrical geometry for the test to allow comparison of numerical results with an
analytic dispersion relation that is valid in the limit of vanishing resistivity. For comparison, we
determine the anaytic eigenvalue, the matching parameter D¢ resulting from singular
perturbation [33, 34], by integrating the Euler-Lagrange equations for the helical perturbation
[35] in the regions outside the tearing layer. In the pressureless limit, the growth rate for

asymptotically small resistivity is then computed from the dispersion relation [34]

1/5 215

_2205/4) 8 ’56 m? ags’l @B, O h 3/5 -
PRI 204 &dr or = Smys
pG3/4) g gRqerﬂHSrTbrg M g

whereq is the ‘safety factor’ or magnetic winding number (2p rB,/ LB, inaperiodic cylinder)
using equilibrium values at the resonant surface radius (s, where q(rg)=-m/n). The equilibrium

we consider is the pressureless paramagnetic pinch [36] with normalized on-axis current density

(myaJd /B, wherea isthe cylinder radius) set to 3. The q profile varies from 1.2 on axisto 0.19
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a r=a for an aspect ratio L, /2pa=5/9, and resonance for the m=1, n=-1 perturbation occurs at
r=0.3859a (see Fig. 2). Solving the Euler-Lagrange equations for this equilibrium and resonant
surface yields D(=6.679. This value is verified with Fig. 3 of Ref. [37] after changing
normalization (Ref. [37] has J normalized to unity on axis, and a is varied).

The NIMROD computations use the finite element mesh to represent the r-g plane of the

straight periodic cylinder with Fourier representation for the axial direction, so the calculations

solve for the Cartesian components of V and B. The meshes are circular-polar with grid lines
running along constant g-vaues with uniform spacing and along constant r-values with
nonuniform spacing to allow packing near the resonant surface. An example is the 16" 16 mesh

of bicubic eements with isoparametric mapping shown in Fig. 1a. The radial mesh spacing as a

function of radia cell index is based on the local g-value by defining a discrete cumulative

distribution,
fi :é 1+ Apexp1|' - [qz(rj) q(rs)] 21; fori=1,2,...N, ,
j=1 i Wgla(0)- al@)’p

where Ay and W, are dimensionless parameters that control the magnitude and extent of packing,
and rj, j=1,2,... Ny are cell-center locations of a preliminary uniform mesh. We use the f;-values
to define a continuous piecewise linear function of radius that increases from zero to f; over the

first cell in the uniform mesh, from f, to f, over the second cell, and so on, reaching fNX a the

right side of the mesh. Vertices of the packed mesh are then identified by the radii where the
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piecewise linear function has the values kfy, /NX for k=0,1,2,... Ny. Results for the tearing

mode have been computed with Wp=0.075, 55Ap=12, and meshes ranging from 8 8 (with
bicubic elements) to 256° 256 (with bilinear elements). The resulting mesh spacing changes too
abruptly to avoid overshoot with cubic splines, so the mapping and equilibrium field data are
interpolated with the same basis functions used for the solution space. For numerical integration,
the tests have been completed with 9 Gaussian quadrature points per element for bilinear
elements, 16 for biquadratic, and 25 for bicubic, which is an additional point per direction
relative to what is normally used.

The calculations are run as initia value problems, but only linear terms are included in the
time-advance, so the behavior is independent of the perturbation amplitude. The initia flow
velocity perturbation is chosen to be smooth and to have nonzero curl to excite the tearing
instability, but otherwise, it is arbitrary. The value of kinematic viscosity is chosen to be

sufficiently small as to have no significant effect on the computed growth; through
experimentation this condition is found to be Pm° nmy/h £10°3 for this mode. We fix the
mass density and equilibrium magnetic field to set the Alfvén speed (va © B/, /myr ) to 1 m/s

on axis, and with a=1 m, the Lundquist number (S° mpava/h ) is numerically equivalent to the
inverse of the electrical diffusivity.

The essential features of the tearing mode are 1) adherence to the asymptotic analytic scaling
s% evident in Eqg. (17) and 2) nearsingular behavior of the eigenfunction in the vicinity of the
resonant surface. Figure 3 displays computed growth rates on a logarithmic scale to show the

asymptotic behavior at large Svalues. At the smaller S-values, the tearing layer extends over

non-negligible variations in the equilibrium, and the behavior is more diffusive than what is
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assumed in the asymptotic anaytic calculations of Refs. [33, 34]. The NIMROD results for

$=10°-10° havebeen computed with a32" 32 mesh of bicubic elements with A,=5. At S=107, a
48 48 mesh of bicubic elements with Ay=8 resolves the more localized eigenfunction. At
s=10% a larger mesh of biquadratic el ements proves more tractable, and resolution to within 5%
of the anaytic growth rate is achieved with a 144" 144 mesh with A,=12.

Flow velocity components of the eigenfunction for s=10° computed with the 32" 32 mesh of
bi cubic elements show the localized response associated with the resonant surface (see Fig. 4).
Although the growth rate is converged with respect to spatial resolution and at Dt=100t 5 IS
accurate to within 2% of the temporally converged value, there are azimutha variations in the
axial velocity projection evident at the scale of the mesh (Fig. 4c). These variations are reduced
when the computation is performed with more elements in the azimuthal direction or by reducing
the value of Dt, so the fully converged solution with p=3 is free of the error. However, smilar
computations with @) a 48" 48 mesh of biquadratic elements, b) a 24" 24 mesh of biquartic

elements, and ¢) a20" 20 mesh of biquintic elements—all with roughly the same amount of data

as the 32° 32 bicubic computation—show no azimuthal variations (see Fig. 4d), and a
Dt=100t 5, thereis only a 0.3% variation among the computed growth rates.

Spatial convergence properties with respect to the mode growth rate at s=10° for biquadratic
and bicubic elements are shown in Fig. 5. For each calculation, the numbers of elements in the
radial and azimuthal directions are identical, and the meshpacking parameters A, and W, are

kept fixed as the number of elements is varied. Clearly, convergence to within 1-2% is quite
rapid with p=2 basis functions. In comparison, the growth rate for a256° 256 bilinear mesh with

A,=10 and otherwise similar parameters (not shown in Fig. 5) is in error by more than 25%.
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Given that the temporal resolution is sufficient for the analytical dispersion relation (17) to
describe the growth of the numerical solution from time-step to time-step, our expectation for the
spatial convergence of the computed growth rate is ~h° by the following argument: The spatial

distribution of the computed eigenfunction enters Eq. (17) through the matching parameter DC.

Furthermore, the D(-vaue computed from the numerical solution can be described as

D + E(h), where the error, E, goes to zero as h is reduced and the computed D¢ approaches its

anaytical value, Dg . For  small h, the resulting growth rate

g(h) ~[D§ + E(h)]*/5 @Dg*/ 1+ (4/5)E(h)/ D], so the error in the computed growth rate is
proportional to the error in the computed matching parameter. Noting that

DC=[(dby /dr)rSJr - (dby /dr)rs_ ]/(br)rS depends on derivatives of the eigenfunction on either

side of the resonant surface, we expect to observe g(h)- g(0)~hP, i.e. the rate given by finite
element analysis for the convergence of first derivatives, Eq. (3). The results for biquadratic and

bicubic elements show faster convergence in this test. For example, the biquadratic series of

computations for 48, 96, and 192 elements per direction shows g(h)- g(0)~ h32 .

Performance with respect to the magnetic divergence constraint is more easily related to finite
element analysis. In Fig. 6, we plot the 2 norm of the error vs. h on a log-log scae for the
biquadratic and bicubic calculations represented in Fig. 5 and for three bilinear computations.
As h is decreased, the convergence rate for each basis approaches the value of p, consistent with
Eq. (3). Inall of these cases, Dt=100 and kgjn=0.1, where the value of Ky, has been chosen to

achieve an acceptable error level for the computation with the coarsest mesh, the 8~ 8 mesh of

bicubic elements.
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Since the diffusivity Kgiyp is numerical, a result is not converged unless it is insensitive to the

kgiv-value. Therefore, achieving this independence readily as h is reduced is a desirable
property for the algorithm. To determine the sensitivity in the tearing-mode calculations, we
have varied kg, in computations with different basis functions. The resulting growth rate and
magnetic divergence error for a128° 128 bilinear mesh, a48 48 biquadratic mesh, and a32" 32
bicubic mesh are plotted in Fig. 7. The broad range of kg, values producing the same growth
rate for the biquadratic and bicubic cases provides confidence that the error diffusion approach
leads to a good strain energy norm for the magnetic advance when p=2. In contrast, the
sengitivity of the bilinear result to the kgyn-vaue implies proximity between conditions where
the error diffusion term is insufficient to control the error and conditions where the term imposes
too many constraints. However, we note that while the performance of bilinear elements is poor
in this test, they have been used effectively in simulations with larger levels of physica
dissipation.

The last set of computations for the tearing- mode problem considers a range of time-step

values to examine temporal convergence properties. The computed growth rates for s=10° are

plotted in Fig. 8 as a function of ggDt, where g is the converged value, with dissipation terms

evaluated as centered and forward approximations with respect to the time-step [setting the
parameter g of Egs. (12-15) to 0.5 and 1, respectively]. All of the results shown in Fig. 8 are
within 10% of the converged value, but it is possible to distinguish different asymptotic behavior

for the two approximations. Results with the centered approximation are well fit by the

quadratic Ocentered @6.44° 10 % - 5117107 3(gDt)?, demonstrating second-order

convergence, whereas a linear term is needed to fit the nonmonotonic behavior of the forward
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aPProXimation, g sonwarg @6.44° 1074 +1.54” 10 %(gyDt) - 4.94" 10" 3(ggDt)?.  The linear

term dominates the error in the forward approximation only for goDt=0.03, and a transition to

guadratic behavior occurs where the computed growth rate is still quite accurate. Thus, the
truncation error from the dissipation terms has only a small effect on the accuracy in this
representative calculation, where the physical conditions are nearly dissipationfree. Temporal
convergence is primarily determined by the numerical method used for the large ideal terms—
the leap-frog method stabilized by the semi-implicit operator. Since the semi-implicit operator
enters with a Dt coefficient (see Section 3.1), the method retains the second-order accuracy of
the basic legp-frog method. Forward approximation of the dissipation terms is routinely used in
nonlinear NIMROD simulations to provide damping for all wavenumbers that are represented,

unliketime-centered dissipation.

4.2 Anisotropic Thermal Conduction
Equation (5) for diffusive heat flux reproduces rapid equilibration along magnetic field lines

and relatively sow energy transport across magnetic flux surfaces when the etio of thermal

conductivities, C| /c/\ , islarge. In numerical computations with this model, truncation errorsin

the temperature gradient are multiplied by the parallel conductivity, and the resulting heat flux
errors tend to produce artificial perpendicular transport that can be attributed to the misalignment
of B and the computed NT. For our representation, temperature is expanded in the form of
(10b), and continuity at the interfaces between elements is not enforced for spatial derivatives.
Thus, NT is a piecewise continuous vector field that in general has discontinuity along the

element interfaces. With a continuous and therefore different representation of magnetic field,

34



such as an expansion in the form of (10a), numerica computations of paralel thermal
equilibration do not reproduce B:NT =0 everywhere unless the distribution of B is restricted.
(For example, the gradient of the expanded temperature field can satisfy B:NT =0 everywhere
if B is uniform.) The most challenging conditions for numerical computation arise when
Cy /c,\ >>1 and B has a genera distribution with its direction varying across the mesh—
conditions that often occur in the smulation of nonlinear MHD activity in high-temperature
plasmas. Here, we devise a test that measures the effect of artificial heat transport in finite
element computations and use it to show that high-order elements can satisfy B:NT =0 with
sufficient accuracy for redistic c"/cA -ratios.

While it is possible to evaluate the convergence of B:NT in a sequence of numerical
computations, the impact of the truncation error on thermal transport when computing with
reaistic C”/C/\ -rétios is the more pertinent issue for time-dependent MHD simulations with
evolving temperature and pressure profiles. Thus, our test problem has been devised so that the

effective perpendicular thermal conductivity, including conduction from numerical errors, can be

easily measured from the resulting temperature distribution. The domain is the unit sgquare,

- 0.5£ x£0.5,- 0.5£ y£ 0.5, and homogeneous Dirichlet boundary conditions are imposed on

T aong the entire boundary. The source Q=2p 2cos(px) cos(py) is used in the temperature
evolution equation to drive the lowest eigenmode of the configuration, and a charge current
density directed out of the x-y plane is induced by an electric field that has the same spatial
dependence as the heat source. An extremely large mass density prevents MHD motions, so that

diffusive behavior dominates. Analytically, the resulting magnetic field is everywhere tangent to

the contours of constant temperature in the solution for isotropic (¢ = c ) thermal conduction,
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T(x,y) = ¢ +*cos(px) cos(py) , S0 anisotropic conditions with c|>>c~ have the same solution.

In numerical computations, transport that is artificially enhanced by truncation errors in the heat

1

flux vector can lead to a maximum temperature that is less than ca~, even when the alignment

of B and the computed NT appears acceptable. By setting the ¢ -coefficient to unity in the
caculations, we arrange the problem so that the computed steady-state value of T 1(0,0)
provides a direct measure of the resulting effective perpendicular conductivity including
truncation error. As a guide, errors of order 10" would normally be considered acceptable for

nonlinear simulations. Note that the magnetic field direction varies within the domain, so
computations with a ssimple rectangular mesh provide a rigorous test.

To study convergence properties, the conduction problem is run to steady state with ¢ / Ch -

ratios of 103, 106, and 10° with a range of mesh sizes and basis function pvaues. Numerical

integration for the finite elements is performed with the standard number of Gaussian quadrature

points for a given basis (4 for p=1, 9 for p=2, etc.). The resulting error in perpendicular

diffusivity, | T-1(0,0)- 1|, is plotted in Fig. 9. Clearly, the accuracy and convergence rate

improve substantially with p for this problem, where the solution is a smooth function of

position. Convergence rates approach the values predicted by Eq. (2) for ¢ / Cn -ratios of 10°

and 10°. For ¢ I / ¢ =107, the obtained convergence rates are slightly less than the predictions,

Nonetheless, we find that elements with p=3 can meet a sufficient level of accuracy in these

extreme but laboratory-plasma-relevant conditions, whereas bilinear elements struggle at

cy/ca =10° and are entirely inadequate at cy/ca =10°. A redlistic application including
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three-dimensional magnetic topology is considered in the following section and confirms the

effectiveness of the high-order spatial representation.

5.NONLINEAR TEARING EVOLUTION
As an example of anonlinear simulation in stiff conditions with large anisotropy, we consider
a resistive tearing mode in a toroidal MHD equilibrium with noncircular cross section, tokamak

safety-factor profile, and aspect ratio Rla=3 (see Fig. 10). A vanishingly small value of plasma
beta (b © 2myP/ B2) has been chosen to prevent stabilization of the current-driven mode [38].
In these conditions, the internal energy evolution serves as a measure of confinement properties,
but it does not play a role in the MHD activity. The mode, while in its linear stage, is then
smilar to the cylinder mode described in Section 4.1. The primary distinguishing feature is

coupling among poloidal harmonics due to toroidal geometry and the shaped cross-section.

Responses that are resonant at surfaces with different ratiord g-values are coupled if they have

the same toroidal Fourier index, n. Other parameters for the simulation are: nss=1020 m'3, ta=1

ms, S=10°, Pm=0.1, ¢ =42m?s1 =100n/my, and ¢ =4.2" 10’ m?s™. Here, the Alfvén time

isdefinedas t 5 ° q(O)RJrrbr /B, » Where the denominator is the value of the corresponding

vacuum toroidal magnetic field at the geometric center of the cross section. The numerical

particle diffusivity is set to the same value as the perpendicular thermal diffusivity, D =c~ , and
for controlling divergence error, K gi,,=100 mis™

Since the tearing mode is the only MHD instability of the equilibrium, we first run a linear
computation for the n=1 toroidal Fourier harmonic. The resulting eigenmode, plotted in Fig. 11,

shows coupling from the dominant m=2 poloidal harmonic to the m=3 and m=4 harmonics, and
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the computed growth rate is 4.72° 10"% . The nonlinear simulation has toroidal resolution
0=n=2, and the n=1 eigenmode from the linear computation is used as the initial condition with
its amplitude adjusted to create a small but finitesized magnetic isand. Both computations
(linear and nonlinear) use a 32" 32 mesh of biquartic elements (p=4) with moderate packing at

the g=2 and g=3 surfaces (see Fig. 10a). The time-step in the linear computation is Dt=2t 5, and

in the nonlinear simulation its value is alowed to increase by a factor of two during the
simulation. The boundary conditions described in Section 2 imply that the MHD dynamics
reproduce fixed-boundary behavior in this configuration where there is no vacuum region
surrounding the conducting plasma.

In the nonlinear simulation, the growth of the mode is immediately slowed from the
exponential time-dependence that characterizes linear behavior. This is observed from Fig. 12a
through the non-constant slope of magnetic perturbation energy evolution plotted on a semi-log
scale. The result is consistent with analytic theory in that the island width (proportional to the
fourth root of perturbation energy) is predicted to have linear-in-time growth starting when the
helical idand chain extends beyond the resistive tearing layer [39]. Here, the linear time
dependence of the island width occurs for t<12 ms, as shown in Fig. 12b, and the slope is within
33% of the value given by the anaytical relation dw/dt =1.22Dh /ny, [40], where D¢ has been
estimated from the cylindrical dispersion relation, Eq. (17), using a growth rate calculated from

the same toroidal equilibrium but with reduced viscosity. Over atime-scale that is long relative

to the energy transport time-scale, az/c/\ , the free energy in the equilibrium current density
profile is expended, and a three-dimensional steady state is achieved. The simulation also shows

that the coupling of harmonics illustrated in Fig. 11b leads to a secondary magnetic island chain
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at the g=3 surface. Thus, the final state shown in Fig. 12c has two sets of helical magnetic
surfaces that are embedded in nested toroidal surfaces.

Changes in the temperature profile due to the presence of a magnetic idand can lead to
nonlinear neoclassical effects in tokamaks [41, 42], so accurate modeling of idand
thermodynamics is also important for tokamak simulation studies. Whether anisotropic heat
conduction affects the temperature profile in the presence of the island depends on the balance of
diffusion in the paralel and perpendicular directions [43]. The length-scale for paralel
conduction is effectively infinite at the island separatrix, since the magnetic field- lines reconnect
on themselves after a finite number of transits and do not trace a complete helical surface.
However, flattening of the temperature profile occurs within the island when magnetic

reconnection decreases the parallél length-scale enough so that parallel conduction occurs at a

rate that is competitive with perpendicular conduction, i.e. C| / Lﬁ @x A / L2 . Since the paralel

length-scale within the idand is inversely proportiona to the isand width (for idand widths that
are smal in comparison to the length-scale of the equilibrium magnetic shear), and the
perpendicular length-scale is proportional to the island width, the critical island width required to

affect the temperature is expected to follow W ~ (c I / Ca ) 14 [43].

To test whether the NIMROD algorithm reproduces the theoretical dependence, we use the

magnetic field configuration from five different times in the nonlinear ssimulation and run
thermal-conductionronly computations with gradually increasing c; in each configuration.
Recording the C| / Ca -ratio required to produce an inflection of the temperature profile at the

resonant surface as a function of island width then permits comparison. (The aternative of

running a series of nonlinear MHD simulations with different c / Ca -ratios would require far
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more computation.) The simulation result for the island-width scaling, w~ (c I /cA )0'24, isin

good agreement with the analytic scaling of Ref. [43], and even the numerical coefficients are
comparable, as illustrated in Fig. 13. The discrepancy reflects the fact that the numerically
observed w and W are different quantities. The analytic relation has been derived as a scaling
argument to distinguish small- and large-idand-width behavior by identifying conditions where
the parallel and perpendicular diffusion times match. It isnot a precise relation for the condition
recorded from the simulations, the inflection of the T-profile. The anaytic relation has also been
derived for cylindrical geometry and does not account for any toroidal effects that influence the
island geometry. In fact, the simulation results provide empirical evidence supporting the

application of the analytic scaling to toroidal configurations.

6. DISCUSSION

The test results presented in Sections 4 and 5 demonstrate favorable convergence propertiesin
stiff and anisotropic conditions when the degree of the polynomia basis functions, p, is 2 or
larger. For p=1, the poor performance can be anticipated from the occurrence of ‘spectra
pollution’ in ideal MHD eigenvalue calculations [1,2] and from the divergence-stability
consideration in steady incompressible fluid computations [31,32]. However, while our
approach to spatial representation is generally related to the methods used in these applications,
there are unique aspects in both the nontideal MHD application and the algorithm. Here, we
discuss how the unique aspects contribute to the favorable performance in the time-dependent
MHD computations with p? 2.

A numerical approximation of the ideal-MHD linear force operator, L from Eq. (8), appears

in our semi-implicit time-advance agorithm and in computations of ideal MHD eigenvalue
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problems [1]. However, it plays a different role in the two applications. Observe that an idea

MHD eigenvalue problem can be defined by considering Cth2®I as a free parameter in our

velocity advance, EqQ. (12), with C,=n=0 and dropping all terms on the right side. The remaining

equations, (13-15), and the solution space for n, T, and B would not be used, so the numerical

spectrum is determined by the approximations of L and the inertial term, that result from the
basis functions used for Vi, . 1N contrast, the purpose of the L -operator appearing in our time-
advance algorithm is to add selective numerical dispersion to the leap- frog method. Here, the L-
operator does not, in itself, determine the result of linear computation, because the algorithm has
separate computations of n, T, and B, and the solution space is correspondingly larger. As a
means to extend numerical stability beyond the Dt-limitations arising in a purely explicit time-
advance, semi-implicit operators only need to approximate the combined operation of the
explicit terms appearing on the right sides of Egs. (12-15)—see Eq. (20) of Ref. [23]. Thus, itis
possible to use approximations of L that are unacceptable from the ideal MHD eigenvalue
standpoint, provided that errors resulting from the spectrum of the semi-implicit operator
diminish rapidly as time-dependent results are converged. Although we have not analyzed the
spectrum of our semi-implicit operator, the results presented in Section 4 show clearly show
favorable convergence properties for p? 2.

A more readily apparent distinction from the ideal MHD problem is that the non-ideal MHD

system (4a-f) is higher-order as a system of partial differential equations, due to the dissipative

terms. To ensure that the dissipative terms, like ¢pix gDtr n(NW*):(ND\/) in Eq. (12), are square
integrable, hence, to be admissible in a conforming approximation, the basis functions must be

continuous. The alternative is to use a mixed method [44] with additional equations and finite

41



dimensional spaces for the spatial derivatives themselves, but this is achieved at the expense of
solving larger linear systems.

While the algorithms for ideal MHD eigenvalue problems and time-dependent nonrideal
MHD can differ in important ways, genera properties that lead to effective computation are
similar, because the ideal terms also dominate the behavior of all iff time-dependent MHD
systems. The most important properties [1, 2, 45] that are needed for the idea part of the
agorithm are 1) resolution of B:N in singular layers and 2) accurate approximation of nearly
incompressible flows and the magnetic divergence constraint [9]. Regarding the B:N
calculation, we have quantitatively examined its convergence properties with the anisotropic
thermal conduction tests of Sections 4.2 and 5. For the ideal MHD contributions, the context is
different (B:NV and B:NB), but the convergence properties of all spatial derivatives within
elements follow the behavior described by Eq. (3). The results presented in Sections 4.1 and 4.2
provide confidence that continuous basis functions with [ 2 are satisfactory in this regard and
that P 3 accommodates severe anisotropy. A unique benefit of using generic high-order basis
functions, which are not specialized for different components of a magnetic coordinate system, is
that convergence properties are not lost in nonlinear computations when the magnetic direction
vector changes significantly.

Regarding the divergence constraint and compressibility, when p2 2, the finite-element part of
Eg. (10a) is closdly related to continuous vector-field expansions that are used in two-
dimensional viscous incompressible fluid computation. However, the error diffusion method is
not one of the standard methods for enforcing incompressibility. To compare the error diffusion

method with the standard methods, consider introducing an auxiliary scalar variable in Eq. (16)

42



for the divergence error and a separate constraint equation. In this mixed method, the magnetic

bj +3/2

advance now solves for and X that satisfy

d}lxic* o132 4 th%(N' c*)x(N ’ bj+3/2)— (N m*)CE
|
| (1843)
= gix Dt(N” ¢*) x(v“l' B) - Dregds” Exc*
@xixl_c +XN>¢3J+3/2§=0 (18b)

fordl ¢l Bpnp adfordl X1 Cp . Where Cp s afinitedimensiona space for the

additional scalar C. Thereis no differentiation of the auxiliary scalar, so its representation only
needs to be piecewise continuous to satisfy the requirements for a conforming approximation.
This method can be related to the projection method of Brackbill and Barnes [9], but solving
Egs. (18a-b) smultaneously with a large vaue of | prevents the formation of monopoles,

whereas projection removes them after the magnetic field is advanced. Numerical analysis of

finite elements for steady incompressible fluid applications proves that it is possible to find
Ch,N,p for continuous representations of b*¥2 with p>1 such that the product space of
{Bh.N,p:Ch,Np satisfies divergence-stability [31, 46]. Convergence to a divergence-free

vector field is then assured even in the limit of | ® ¥ , which is comparable to taking the limit

If one were to replace (18b) with the local relation C=-1 N 13 2 substituti ng C into (18a)

recovers Eq. (16) with gDtk gjyp,® | , but this changes the numerical character of the finite
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element solution. The space represented by { (Nxb)|b1 BnN,p} isnot among the Cy
spaces that satisfy divergence-stability in combination with continuous representations

of By n,p, because it imposes too many constraints [32]. If the approximation is so over

constrained that the matrix resulting from ¢gix | (N >C*)(N I+ 2) is invertible, the physical
terms in (18a) would not affect the solution unless | has a small value. The penalty method

described in Ref. [10] uses this form of the constraint relation, but selective reduced numerical

integration, i.e. intentionally inaccurate numerical integration, of the constraint terms ensures

that the matrix resulting from ¢yix | (N >c*)(N i3/ 2) issingular. Ref. [47] shows that in some
cases, reduced numerical integration is identica to using a mixed method that satisfies
divergence-stability.

In our time-dependent computations without selective reduced integation, poor performance

of the error diffusion technique results from over-constraining the computation when the value of
Dtk 4y 1S chosen to be too large for a given continuous representation of magnetic field. The
increasing range of a&ceptable Dtk 4 p-values with polynomia degree (p), illustrated by the

results shown in Fig. 7a, reflects better separation of the longitudinal and solenoidal parts of the

expanded vector field as the number of degrees of freedom in each element are increased. This

increasing separation implies that the matrix from ¢glx | (N >c*)(N j+3/2)

becomes singular as p
is increased from unity, so the constraint term does not dominate the physical terms when
Dtkdivb isfinite.

We can aso assess the longitudinal/solenoidal separation by counting the dimensionality of

the spaces Bp,gp and { (N>)|b] Bhop} as functions of p in a specific example: A two-
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dimensional rectangular mesh of m Lagrange elements in each direction has (mp+1)2 nodes or

2(mp+1)2 coefficients for an arbitrary vector field with two components, which is relevant for the
n=0 part of our computations. With Dirichlet boundary conditions for the normal component

along the entire boundary as essential conditions, the dimension of Bhop is then 2(m2p2-1).

Finding the dimensionality of { (N>b)|bT By} is a little more complicated, because the
subspaces of scaars from b, /fx and from 'ﬂby/ﬂy intersect but are not identical. With
Cartesian components and the mesh aligned with the axes of the coordinate system, the scalar

field formed by b, /fx consists of discontinuous piecewise polynomials of degree p-1in the x-

direction and continuous piecewise polynomials of degree p in the y-direction. In genera, this
field can be described by a nodal polynomia expansion with mp(mp+1) nodes, but the boundary

X

conditions on B constrain path integrals across the x-dimension, Qm_ax dx by /T, so there are
N

m

only m2p2-1 degrees of freedom. The scalar field of b, /‘ﬂy smilarly has m2p2-1 degrees of

freedom. The two discontinuous scalar fields share all polynomials that are continuous and of

degree p1 in both directions and that satisfy the path integral constraints in both directions.
Therefore, the intersection is described by an expansion with mz([}l)2 nodes. Adding the
dimensions of the discontinuous spaces and subtracting the dimension of their continuous
intersection, we find { (N%b)|bT By} to have dimension m?p® +2m?p- m? - 2, which is
the number of constraints imposed when using members of this space as test functions for the
divergence constraint. The ratio of degrees of freedom in By g, to the number of constraint

equations is then
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2,2 2
2mep” - 2 @ 2p

m2p2+2m2p-m2-2 p2+2p-1 ’

where the approximate holds for large m. Although this result has been derived for a specia
mesh, we expect that the large-m approximation is general. For p=1, the approximate ratio is
unity, making computational results very sensitive to the value of DtK ;. For p=2 and larger,
the ratio exceeds unity, and for large p, it limits to 2, the optimal ratio in two-dimensiona
computations [32].

For three-dimensional computations, the constraint can be addressed separately for each
Fourier component, because the divergence operator is linear. Considerations for the n=0
Fourier component are identical to those given above. For all other Fourier components, the
number of additional degrees of freedom due to the third dimension is equivalent to the number
of nodes in the representation of b,, which is mo+1)2 in the smple mesh used above. The
number of test functions, and hence the number of constraints, also increases. Here, the
derivative fb,/fz is just an algebraic operation in the Fourier representation, 2p inb,/L,, so
the space of test functions includes polynomials that are continuous and of degree p in both x and
y. All of the possible continuous functions (of degree p in one direction and p1 in the other)

resulting from b, /qx and Moy /ﬂy are contained in the larger continuous space associated with
2pinb,/L,. Thus, the number of constraints for Fourier indices with n>0 is (rm+1)2 plus the
number of nodes that dalow discontinuity in expansions for b, /fx and oy /ﬂy,

2(mp+1)(m- 1). The ratio of degrees of freedom to the number of constraint equations for n>0

isthen
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2.2 2
3m p” +2mp-1 @ 3p

m2p2+2m2p+2m- 1 p2+2p

for large m.

Here, again, the ratio exceeds unity for p>1 and largem, and it approaches the optimal ratio of 3
for three-dimensional computations in the limit of large p. (Section 4.4 of Ref. [32] describes

similar conclusions for quadrilateral and brick elements, but the number of constraints is

determined by the accuracy of the numerical integration. The ratios derived above are based on

exact integration and the combined finite element/Fourier representation.)
The increasing insengitivity to Dtk gj,n-values as p is increased, as demonstrated by the
results in Fig. 7a, is consistent with what we have found above regarding the dimensionality of
Bh,n,p and the number of constraints imposed by the divergence cleaning term. The ratios of
degrees of freedom for n=0 and n>0 approach their optimal values as p is increased, so we can
expect increasing separation of expanded longitudinal and solenoidal fields. For computations
where the ratios are greater than unity but not optimal, selecting finite Dtk yj\-Vvalues avoids

over-constraining the magnetic  advance. We have found that setting

Dtk giyp/h? ~ O(1) or O(10), i.e. diffusing the error over the element dimension at each time-
step, enforces the constraint sufficiently in most of our applications.

The numerical issues for compressibility of flow are similar to the considerations for the
magnetic constraint. Although the equations we solve are compressible, the anisotropies of the
MHD system lead to very different responses between shearing and compression, and

compressive behavior tends to equilibrate on time-scales that are fast in comparison to resistive

47



tearing behavior [33, 34]. The numerical operator L appearing on the left side of Eq. (12)

contains the terms
2688 (e ARV
CoDt QE(waA * )N ) +app (Now* )(N>Dv)a (19)
g ¢

where the first term arises from motion perpendicular to By. Since the coefficients can be very

large in comparison to others in Eq. (12)—theratio th(gpo +B§/rrb)/ ro is the square of the
distance traveled by the fastest wave in the MHD system in a time-step—the terms in (19)
restrict compressibility, especially for perpendicular motions. Since Bh,N,p and Vh,Np share
the same set of basis functions, the numerical arguments regarding the dimensionaity of the
space and the number of constraints are also applicable to compressibility. However, Cq is set by
numerical stability requirements for the semi-implicit advance, 0 the only freedom in
controlling the magnitude of the compressive terms is through the Dt-value for the time-step. For
example, the error displayed in Fig. 4¢c eigenfunction computed for the cylindrical tearing mode
with a 32" 32 mesh of bicubic elements decreases with h, but it aso decreases with Dt. With
reduced Dt, the accuracy of the semi-implicit operator is relatively less important, while
reducing h leads to better resolution of the anisotropy.

Regarding computational performance, the sparse direct solver library, SuperLU, has
provided a significant improvement over iterative methods, and this is attributable to the ill-
conditioning of the matrices when Dt is large. As examples of current performance, the 32" 32

bicubic, 24" 24 biquartic, and 20" 20 biquintic linear computations of the cylindrical tearing
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mode considered in Section 4.1 each take approximately 2.5 s per time-step on one processor of
a 2 GHz Intd Pentium IV-based workstation. When the mesh is increased to 48 48 in the
bicubic computation, it takes 9.3 s per time-step. Running the nonlinear computation discussed
in Section 5, which has three Fourier components and uses matrix-free iterative solves for the
temperature advance, on the IBM-SP3 at the National Energy Research Supercomputing Center
(http://www.nersc.gov) takes 13.1 s per step on 12 processors, 7.7 S per step on 27 [rocessors,

and 5.9 s per step on 48 processors.

7. CONCLUSIONS

We have described an agorithm that combines a variational spatial representation with a
semi-implicit time-advance to achieve flexibility and accuracy for application to nortideal MHD.
The marching algorithm is considered a set of variational problems, and the hyperbolic character
of the nonlinear PDE system is brought out in a sequence of complete advances. The temporal
and spatial techniques benefit from each other through their symmetry characteristics. The time-
advance stabilizes the propagation of waves at large time-step by introducing an implicit self-
adjoint differential operator, and the finite element approach ensures that the matrices resulting
in the fully discretized system are Hermitian. Conversely, the variational approach to spatial
discretization provides the required accuracy, and the self- adjoint semi-implicit operator allows
us to create a variational form of the velocity-advance equation. A more general Galerkin
approach may be useful for treating either ion or eectron flows implicitly, however.

The benchmark cases presented in Section 4 and the nonlinear simulation presented in Section
5 demonstrate the effectiveness of the algorithm. The resistive tearing calculations show that a

modest number of finite elements with p>1, sufficient mesh packing, and a large time-step can

reproduce the subtle force balances associated with MHD anisotropy. For example, even the
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computation with a 16° 16 mesh of bicubic elements and Dt=100t 5, which is nearly 10° times
greater than the limit for an explicit computation with the same spatia representation, finds a
growth rate that is within 12% of the converged result for $=10° and Pm=10". The anisotropic
thermal conduction test in simple geometry shows that sufficient accuracy can be achieved to
resolve parallel and perpendicular transport properties in realistic conditions without aligning the
grid to the magnetic field; efforts to align the grid will further increase accuracy. The simulation
discussed in Section 5 demonstrates performance with respect to slowly growing nonlinear MHD
activity, and the comparison between numerical and analytic results on the magnetic island width
required for temperature profile modification confirms that the modeling of anisotropic diffusion
in three-dimensional magnetic topologies is accurate.

The geometric flexibility of the algorithm makes it suitable for many applications in magnetic
confinement fusion. The nonlinear tearing evolution illustrates conditions encountered while
using NIMROD to simulate neoclassical tearing modes and high-beta disruptions in tokamaks
[21, 48], where accurate anisotropic diffusion is critical. In combination with a temperature-
dependent resistivity, the accurate modeling of anisotropic diffusion permits us to address
nonlinear free-boundary tokamak computations, where Ohmic heating leads to large electrical
conductivity in the region of closed magnetic flux surfaces only [49]. NIMROD is also being
used to ssimulate nonlinear magnetic relaxation in aternate configurations, such as spheromaks
[50-52] and reversed-field pinches [49, 53], where separation of time-scales tends to be less
extreme than in tokamak plasmas, but the behavior often includes evolution to MHD turbulence.
Although numerical issues associated with relaxation simulations have not been discussed in this
paper, the flexibility to address many different topics with one code has been a goa since the

inception of NIMROD development. Additional geometric flexibility will be achieved with
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further development of triangular elements. (For ssimulating experimental configurations without
geometric symmetry, the numerical algorithm can be implemented with finite elements in all
three directions.)

Further development of the agorithm is proceeding along two general paths. First, we
continue to make numerical refinements for the non-ideal MHD model described here. We
expect to improve the existing predictor/corrector treatment of flow with regard to accuracy and
efficiency in extreme (but not shocked) conditions. In addition, we will investigate selective
numerical integration for the compressibility terms in the semi-implicit operator. The second
path of development concerns expanding the agorithm to solve more redlistic models for high
temperature plasmas. The NIMROD implementation is designed to have flexibility in the
equations that it solves, and the modularity facilitates efforts to improve numerical methods for
more realistic plasma nodels. Some development has already been completed in the area of
two-fluid effects [7], and we are presently working to improve accuracy at the large time steps

needed for nonlinear fusion studies. We are also adding kinetic effects [20-22] that have a strong

influence on the MHD- like behavior of nearly collisionless plasmas.

APPENDI X
Several applications require simply connected, topologically cylindrical domains. For these
cases, we use the finite element representation for the RZ plane, and one side of the mesh lies
along the Z-axis. Physical fields and their partial derivatives must have unique values at the axis,
which leads to a set of regularity conditions for the Fourier components in the limit of R? 0.
The conditions are derived with a 2D Taylor series expansion of an arbitrary function of

Cartesian x and y coordinates with origin a& R=0 in a constant-Z plane. Substituting
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R(eij +el )/ 2 and R(eij el )/2i for the Cartesian x andy, respectively, while leaving the
expansion coefficients in terms of Cartesian derivatives, determines the appropriate functional

form for each Fourier component in the limit of R? 0. For scalars we have

lim

re of (Ri )= fO(Rz) +5N1 Rn[fn(R2)+ f;(RZ)] (A1)

n=1

for the finite Four ier series, where f,, n=0,1,..N are polynomial functions of their argument. For

vectors, we have

R“(:; 0 AR’j (R’j ): RaRO’j O(RZ) * lé\l' Rln-u[aRnaj n(R2)+ ARn j n* (Rz)] (A2

n=1

where aR, and a =~ ae polynomia functions. The limiting behavior of A,(R,Z) isthe same as

for scalars. Theradial and azimuthal expansions must also satisfy

g ,(0)=iag (0) . A3

so that the vector has a unique direction at R=0.

Since conditions (A.1-A.3) apply in the limit of R? 0, discrete representationsin Rneed only
consider the leading behavior for each Fourier component index. Conditions where the
polynomial expansion goes to zero at R=0 are applied as essential conditions on the solution

space, like Dirichlet boundary conditions. Satisfying condition (A.3) for n=1 vector components
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is more complicated, since the Rand j components of a vector are computed simultaneously
according to the algebraic system resulting from the weak form of the implicit terms in a given
equation. Our approach is to first compute the matrix elements for the coefficients of the spatial
representation (denoted by a) in the usual manner without considering (A.3). Then for each

node located on the Z-axis, we change to sum and difference coefficients,

0 aR.I.+|ail

2
4 o aR, - 18
S

a.

in the algebraic system. If (l )C denotes the two columns of the matrix corresponding to the

aR and g, elements in the algebraic vector d unknown coefficients, the variable change

modifies these columns to

-'S

(M), » (m),

ael
%uu

QII

The number of rows of the linear system is then reduced by taking a linear combination of the

two rows (r) correspondingto &, and a_,

&l
-

ol &

EUDRELNCES 0

(M)
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and the regularity condition (A.3) is enforced at the given node by setting an essential condition
on the sum coefficient, &, =0. The operations are repeated for each node along the axis, and
the resulting matrix retains the Hermitian property of the original.

For the n=0 component of scaars, the n=0 Z-component of vectors, and the n=1 R- and j -

components of vectors, the leading behavior of the polynomial expansion in Ris that the slope
vanishes in the limit R? 0. For each equation in the time advance, this behavior is enforced by

the respective strain energy without any modification to the spatial representation or the resulting

linear system. For example if the n=0 Fourier component in the expansion of B, has a nonzero

radial derivative at small R computations of the n=0 part of the local J; will be nonzero, leading

to resistive diffusion or radial forces that generate flows to reduce the derivative. The weak form
used in the finite element approach avoids singular terms at R=0 that need specia treatment in a
finite difference or finite volume scheme, where the conditions are explicitly applied to the
differences [29]. As another example of the finite element implementation, consider radial
derivatives in the n=1 R-component of magnetic field near R=0. Since the axia n=1 component
is set to 0 on axis, and condition (A.3) is satisfied, the n=1 part of magnetic divergence reduces
to by / qr , and the error diffusion termin the strain energy for the magnetic advance will tend to
eliminate any nonzero derivative. The conditions are realized as natural conditions, although

there is no corresponding surface integral.
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FIGURE CAPTIONS

FiG. 1. Finite element meshes illustrating (&) radia packing with piecewise bicubic mapping
from a logically rectangular mesh of quadrilateral elements to a topologicaly polar arrangement
of nodes and (b) combining regions of triangular and quadrilateral elements, using linear
mappings, to align with equilibrium magnetic flux surfaces in atokamak interior while matching

to arealistic experimental cross section at the boundary.

FG. 2. Profiles of equilibrium safety factor or magnetic winding number (g =2prB,/ L B, for

the cylinder with periodic length L,) (@) and normalized parallel current density (b) for the

tearing- mode benchmark.

FiG. 3. Comparison of a NIMROD-computed growth-rate scaling for the cylindrical tearing

mode with the asymptotic analytic dispersion relation, Eq. (17).

FiG. 4. Eigenfunctions for the cylindrical tearing- mode computed with Dt =100 5. Profilesare

plotted in the radia coordinate («/7 ) in (ab), where Y is the normalized poloidal flux function
for the equilibrium, and in the azimuthal angle at a fixed radial coordinate just outside the
resonance in (c-d). Frames (a-c) show the eigenfunction resulting from a 32" 32 mesh of bicubic
elements, whereas (d) shows the result from a 48 48 mesh of biquadratic elements. Boxes

indicate the locations of element-boundary nodes.

Fic. 5. Convergence of the computed cylindrical tearing-mode growth rate with mesh spacing

for biquadratic and bicubic finite elements with $=10°, and Dt =10Q A- The parameter h isthe
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inverse of the number of quadrilateral finite elements in each of the radial and azimuthal

directions.

FiG. 6. Logarithm of the normalized magnetic divergence error, a\/ (‘;jx(N >b)2 / (‘;ij2 , inthe

computed cylindrical tearing- mode eigenfunctions at $=10° and Dt =10a A plotted with respect
to mesh spacing for bilinear, biquadratic, and bicubic finite elements. The exponentia
dependences, h°, expected of the error in a spatial derivative of the solution, according to Eq. (3),

are shown for comparison.

Fic. 7. Growth rate (&) and normalized magnetic divergence error (b) in the computed
cylindrical tearing-mode eigenfunctions at $=10° and Dt =100t A, plotted with respect to the

error diffusivity parameter, K iy, for 128 128 bilinear, 48" 48 biquadratic, and 32" 32 bicubic

finite el ement meshes

Fic. 8. Convergence of the computed cylindrical tearing-mode growth rate with time-step for

forward and centered approximations of the dissipation terms. The spatia representation is a

32x32 mesh of bicubic finite dlements, and the S-value is 10°. The horizontal axis is normalized
with the converged growth rate 0o, and the polynomial fits
6.44° 1074 +1.54" 10" 4(goDt) - 4.94” 10" 3(goDt)? and 6.44° 10°4- 5117 10" 3(gyDt)? for
the forward and centered approximations, respectively, have been computed with the numerical

resultsfrom ggDt £ 0.0644 .
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FiG. 9. Error in the effective perpendicular diffusivity resulting in the anisotropic thermal
conduction test for the indicated values of paralle diffusivity. Results are plotted with respect to

the (uniform) mesh spacing for bilinear through biquintic finite elements, as |abeled.

FiG. 10. Steadystate distributions used in the nonlinear simulation. The safety factor profile

(g=dF/dY , where F is the toroidal magnetic flux function) is shown in (&) with boxes

indicating element boundary locations in the topologically polar mesh. The distribution of JY
in the poloidal planeis plotted in (b) with the heavy lines indicating the locations of the g=2 and

g=3 surfaces.

FiG. 11. Computed eigenfunction of the S=10° Pm=0.1 linear tearing mode that is unstable in the

equilibrium shown in Fig. 10. The poloidal projection of b is shown in (&), and isocontours of

the toroidal component of the perturbed ideal eectric field (fA %" Bg) areshownin (b).

FiG. 12. Simulated nonlinear evolution of the toroidal tearing mode. Magnetic energy for each

toroidal Fourier component is shown in (a), where E, =dBSS+bn)2/2rrb for n=0 and

En= ()b; D, / my for n=1,2. The idand-width evolution is shown in (b) for the magnetic isand
a the g=2 surface with bars indicating the estimated error in measuring the separatrix from
Poincaré surfaces of section. The analytic small-island evolution from Refs. [39, 40] with an
estimated D¢ is also plotted in (b). The Poincaré surface of section for the fina magnetic

configuration is shown in (c).
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FiG. 13. Magnetic idand width on the outboard side of the =2 surface that produces an

inflection in the temperature profile, plotted vs. the ratio of thermal diffusivity coefficients. The
solid line is the power-law fit of the simulation results, w:433(c||/c/\ )0'237 cm, and the

dashed line is the analytic scaling of the critical width W ° (c"/cA ) 1/4(8F’0q/nq(1)1/2, where

the parallel and perpendicular diffusion times match in cylindrical geometry [43]. The latter is

evaluated as an approximate for the toroidal configuration by averaging q(=dg/dr from the

inboard and outboard sides of the equilibrium; thisyields W, = 295(0 1/cn ) Y4 em.
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