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The extended MHD equations, here meaning resistive MHD with the addition of  2-

fluid terms in Ohm’s law and the gyro-viscous stress in the equation of motion, present 
challenges for computational algorithms.  Beyond simple dispersion relations for linear 
waves in uniform media, there are very few known solutions with which computational 
models can be tested.  A non-trivial example is the well-known gravitational instability in 
2-dimensional slab geometry, which was studied with extended MHD many years ago by 
Roberts and Taylor1.  This simple problem illustrates issues that arise in more general 
confinement problems, including interchange instability and its stabilization with 2-fluid 
and finite-Larmor radius (FLR) effects, and so may serve as a candidate for quantitative 
testing of models and algorithms for extended MHD. 

The original motivation for the work of Roberts and Taylor (referred to hereafter as 
RT) is to correct a calculation published by Lehnert2, who called into question some 
results of Rosenbluth, Krall, and Rostoker3.  (With the lineup of Rosenbluth, Krall, 
Rostoker, Roberts, and Taylor on one side, and Lehnert on the other, I think you can 
guess how this comes out.)  Rosenbluth, et al3, had predicted stabilization of the 
gravitational instability on the basis of kinetic theory.  Lehnert2 used fluid theory to show 
that the stabilizing effect of Rosenbluth, et al, was “exactly cancelled by another term in 
the two-fluid equations, leaving only a residual stabilizing effect”1.  RT showed that the 
kinetic result of Rosenbluth, et al, can in fact be recovered with a fluid model if “other 
terms”1 are used in the ion pressure tensor.  Thus, RT showed for the first time that 
“finite Larmor radius stabilization ... can be obtained from the magnetohydrodynamic 
[sic] equations”1, and that it is “not essential to use Vlasov’s equation for this type of 
problem”1.  The paper has become a classic. 

Unfortunately, RT is of classic terseness as well as of importance.  The purpose of 
this note is to work through the analysis of RT in order to elucidate the details of the 
calculation, and to formulate a relatively simple test problem for benchmarking extended 
MHD computations.  We calculate the wave number above which FLR stabilization 
occurs (a useful result not given explicitly in RT), which can be tested with 
computational models.  As an aside, we also find that the exact cancellation reported by 
Lehnert may indeed occur within the equations used by RT if the equilibrium model is 
inconsistent with a fundamental thermodynamic constraint.  Thus, even in this seemingly 
simple stability problem, careful attention must be paid to the properties of the underlying 
equilibrium. 

We consider the problem of a heavy fluid supported by a light fluid in the presence 
of a gravitational force.  The problem is 2-dimensional in the (x,y) plane, with the 
gravitational acceleration g pointing in the negative x-direction, and the density gradient 



pointing in the positive x-direction.  We also assume an exponentially increasing density 
profile.  Thus     G = ρg = −ρgex  and   ∇ρ = ηρex , where   η =1/ Ln  and  is the equilibrium 
density scale length.  (Note that RT take  to be in the positive x-direction and ∇

 Ln
 g ρ  in the 

negative x-direction, so that both  and  g η have opposite signs from that given here.  
However, it seems more “natural” to have gravity pointing “down”.)  The equilibrium 
magnetic field is in the z-direction, and any velocities are in the (x,y) plane.  Including 2-
fluid and FLR effects, the continuity and momentum equations, and Ohm’s law, are then 
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where   p  is the total fluid pressure,  is the electron pressure,  pe  M  is the ion mass, and 
 is the gyro-viscous stress tensor, which in this case is given by the BraginskiiΠ 4 

expression 
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Following RT, we have written     ρν ≡ η3 = p / 2Ω, so that   ν = a2Ω / 2, where      

is the square of the ion Larmor radius,  is the square of the ion thermal speed, 
and     

a2 = Vth
2 / Ω2

  Vth
2 = T / M

Ω = eB / M  is the ion gyro-frequency.  (Note that our definition of ν  differs by a 
factor of 2 from RT.)  As noted in RT, “ν  has the dimensions (but not the exact physical 
significance) of a kinematic viscosity”; indeed, the gyro-viscous force is not dissipative. 

The stationary equilibrium is given by Equation (2) as 
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Since only the density profile is specified (as   dρ0 / dx = ηρ0), there is some arbitrariness 
in the pressure and magnetic field, as long as they do not violate any physical principles.  
One natural choice is      and  B0 = constant

    
dp0
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= −ρ0g    ,  (7) 



so that pressure is a decreasing function of x, as in hydrostatic equilibrium.  However, it 
is a fundamental law of thermodynamics that   ∂p /∂ρ( )S > 0, so that the pressure must be 
a monotonic function of the density.  This condition is violated by Equation (7), since the 
resulting pressure decreases as the density increases.  We thus require that the pressure be 
an increasing function of the x-coordinate.  If we assume an equation of state of the form 
    p = p(ρ) (a barotropic fluid, which encompasses isothermal and adiabatic fluids as 
special cases), then  
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where   Cs  is the sound speed.  The magnetic field must then vary as 
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which depends on the specific form of   p(ρ).  (RT is mute on the subject of equilibrium 
force balance, except to state that “the magnetic field is in the z direction and essentially 
uniform”.  This would seem to imply Equation (7), except that this choice is both 
unphysical and inconsistent with their results, as we shall see.  Perhaps a more accurate 
statement would be that the equilibrium magnetic pressure varies no rapidly than the 
equilibrium fluid pressure.) 

We have not yet addressed the evolution of the magnetic field.  Using Equation (2), 
Equation (3) can be written as 
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where  is the ion pressure, so that the magnetic field only explicitly enters the 
dynamics through the total pressure 
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Therefore, as far as the dynamics are concerned, perturbations to the magnetic field can 
be ignored, and all perturbed pressure forces can be viewed as entering through the fluid 
pressure   p .  It is then a significant, and consistent, simplification to assume that all 
perturbations are electrostatic, so that   ∇ × E = 0.  [RT calls this the low beta 
approximation, meaning that, for a given change in the total pressure   pT , the required 
relative change in fluid pressure is much larger than the required change in the magnetic 
field (by a factor of     B0 / µ0), and the latter can therefore be ignored.]  Setting the curl of 
Equation (9) to zero, and assuming that the ions are barotropic, yields 
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since     ∇ × g = 0.  In the present case, with   B = Bez  and  in the (x,y) plane, this becomes  V
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Given a relationship for     p(ρ), Equations (1), (2), and (12) are four equations in the 

4 unknowns ρ ,  (2 components), and .  Equation (12) (or, 
equivalently, ) serves as an “equation of state” to close the system and 
determine 

  V   pT = p + B2 / 2µ0
    ∇ × E = 0

  pT .  This is analogous to the common assumption of incompressibility in 
hydrodynamics, except that the fluid is not longer strictly incompressible.  (It is 
interesting that non-solenoidal velocity fields can lead to no change in the magnetic field, 
but such is extended MHD.)  If, as in RT, we further assume that the fluid is isothermal 
(“we assume ... that temperature variations can be ignored”1), then   Cs

2 = constant , and 
Equation (12) becomes 
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since  is a symmetric tensor.  Equations (1), (2) and (13) are the equations of the 
model. 

Π

Following RT, we linearize about the equilibrium state, assuming variations of the 
form     exp(iωt + iky ).  We ignore explicit variations of the coefficients in the x-direction, 
which requires     ηLx << 1, where  Lx  is the maximum value of x.  With     Lx ~ λy = 2π / k , 
this implies   η << k .  The linearized components of the gyro-viscous stress are 

    ∇ ⋅ Π( )x = − ρ0ν0( )′ikVx + ρ0ν0k2Vy    ,  (14) 

and 

    
∇ ⋅ Π( )y = − ρ0ν0( )′ikVy − ρ0ν0k2Vx    ,  (15) 

where   (.. ′ )  indicates differentiation with respect to x.  Now, with RT, we let the entire 
variation of the gyro-viscous coefficient enter through the equilibrium density   ρ0, so that 

    ν0 = constant .  (This implies constant temperature and ignores the variation of    with 
x, but is consistent with assumption that  is “essentially uniform”.)  Equations (14) and 
(15) are then 
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and 
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With this, the final set of linearized equations is  
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We have introduced the parameters ξ  and ζ  so that  ξ = 0, ζ = 0 indicates ideal MHD, 
  ξ = 1,  ζ = 0 indicates extended Ohm’s law but no gyro-viscosity,  ξ = 0,  ζ = 1 indicates 
gyro-viscosity but no extended Ohm’s law, and  ξ = 1, ζ = 1 indicates both extended 
Ohm’s law (2-fluid) and gyro-viscous (FLR) effects. 

Accordingly, the dispersion relation can be found in the corresponding regimes.  For 
ideal MHD (  ξ = 0,  ζ = 0) we have 

    ω
2 + gη = 0    ,  (22) 

so that there is instability with growth rate  γ = gη  independent of the wave number .  
With gyro-viscosity only (  

 k
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The solution is 
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With two-fluid effects only (  ξ = 1, ζ = 0) we have 
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Finally, with full extended MHD (two-fluid + gyro-viscous) (  ξ = 1, ζ = 1) we have 
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Taking note that     , and , we find to lowest order in 
small quantities that 

ν0k2 / Ω0 = (ka)2 / 2 <<1   η
2 << k2
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(The coefficients of ω  differ by a sign, and in the case of the factor   ν0ηk  by a factor of 
2, from the results of RT.  This is because of the differences in signs of both    and g η, 
and the factor of 2 in the definition of  ν0, as stated previously.  The predictions of 
stabilization thresholds remain unchanged.) 

With regard to the stabilization thresholds, we note that Equation (25) is equivalent 
to     , Equation (28) is equivalent to , and Equation (32) is equivalent to 

, where     
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Equations (25), (28), and (32) predict stabilization of the gravitational instability for 
sufficiently large wave number.  Stabilization occurs due to both 2-fluid and gryo-viscous 
effects, and is more effective (occurs at lower k) with both 2-fluid and gyro-viscous 
terms.  These quantitative predictions should be testable with computational models of 
extended MHD.  The gryo-viscous stabilization occurs because of the x-variation of the 
equilibrium gyro-viscous   ρ0ν0, so it is important to retain this effect in the computations. 

It is of interest to see what effect the choice of equilibrium has on the solution.  For, 
example, suppose we had chosen initially   B0 = constant , so that force balance is given 
by Equation (7).  Then, along with Equation (8), we have 
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which implies that    and g η are related by   g = −Cs
2η .  Then the coefficient of ω  in 

Equation (15) becomes 
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so that the stabilizing effect is significantly modified.  Perhaps this is related to the 
“almost exact” cancellation and “residual stabilization” found by Lehnert2.  In any case, it 
is unphysical and Equation (30) is the proper result as given by both RT and Rosenbluth, 
et al.3. 

It should be relatively straight forward to design a test case that fits within the 
parameters of this problem that will demonstrate and benchmark 2-fluid and FLR 
stabilization at large enough wave number.  It would also be interesting to estimate the 
sizes of the relevant terms for the ELM benchmark problem to see whether or not 
extended MHD stabilization can be expected. 
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