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Abstract

Various forms of the viscous force caused by collision-induced parallel viscous stresses within

a magnetized plasma are presented. A form of it is proposed for initial value extended MHD

codes to capture the regular (Braginskii) collisional viscous force effects on short time scales and

multi-collisionality regime “residual” viscous forces on collision time scales and longer in axisym-

metric toroidal plasmas. Collision-based viscosity coefficients are described in various collisionality

regimes: high (Braginskii, Pfirsch-Schlüter), intermediate (plateau) and low (banana). Smoothed

formulas for the residual viscous forces induced by electron and ion parallel stresses on collision and

longer time scales that encompass all these collisionality regimes are presented. Finally, suggestions

are made for implementing and verifying viscous force effects in extended MHD codes.
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I. INTRODUCTION

Extended magnetohydrodynamic (MHD) models used in the CEMM project [1] seek to in-

clude all relevant physics needed for simulating fluid-type behavior of magnetically-confined

toroidal plasmas. The M3D [2] and NIMROD [3] code projects under the CEMM umbrella

have historically focused on using ideal and resistive MHD descriptions of axisymmetric equi-

librium toroidal plasmas. Recently, two-fluid effects (e.g., diamagnetic flows, gyroviscosity)

have been included. And explorations of plasma flows and their effects have begun.

In order to properly describe the evolution of flows, the anisotropic nature of the viscous

force in a magnetized plasma needs to be taken into account. In particular, the viscous forces

induced by collision-induced parallel stresses in the plasma need to be taken into account

because: 1) they are the largest viscous forces; 2) they collisionally relax the electron and ion

flows on their respective time scales; 3) in low collisionality plasmas they lead to important

effects in the parallel neoclassical Ohm’s law (trapped particle effects on the resistivity and

bootstrap current) and the poloidal plasma flow (relaxation to an ion-temperature-gradient-

determined value); and 4) it is important for numerical stability and convergence issues to

properly treat dissipative effects in the M3D and NIMROD codes.

This report is organized as follows. Section II describes the various components (par-

allel, cross and perpendicular) of stresses and in particular the collisional viscous stresses

in a magnetized plasma. Appendix A describes the collisional (Braginskii) parallel stresses

in plasmas containing, as is typical in tokamaks, electrons, hydrogenic ions and impurity

ions. The following section (III) presents various forms of parallel stresses and the resultant

viscous forces. Thereafter, Section IV proposes specific forms for viscous forces induced by

parallel stresses for inclusion in the M3D and NIMROD codes. Asymptotic “residual” par-

allel viscous force coefficients in high (Braginskii, Pfirsch-Schlüter), intermediate (plateau)

and low (banana) collisionality regimes, and smoothed multi-collisionality formulas for both

electrons and ions in plasmas with small admixtures of impurity ions are presented in Ap-

pendix B. The penultimate section suggests tests to verify the implementation of these

viscous forces in the M3D and NIMROD codes. Finally, Section VI summarizes the viscous

forces induced by parallel stresses in multi-collisionality regimes for tokamak plasmas that is

suggested for use in extended MHD codes. It also discusses some of the possible limitations

of the suggested form.
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II. COLLISIONAL STRESSES IN A MAGNETIZED PLASMA

The fluid-based viscous force density on a small volume of a plasma species is−∇ ·π. The

fact that this force density is a local differential of the local viscous stress tensor π implies

that the physical processes that cause it are also local. This is unfortunately not true in low

collisionality toroidal plasmas where the collision length λ ≡ vT/ν is usually many times the

toroidal circumference of the experimental device. Nonetheless, the following discussion and

analysis will seek to capture the most important low collisionality physics within this local

model of viscous forces — to facilitate inclusion of viscous force effects of parallel viscous

stresses in the M3D and NIMROD extended-MHD-based initial value codes.

The collisional Braginskii [4] viscous stresses are given by

π = π‖ + π∧ + π⊥, parallel, cross (gyroviscous) and perpendicular stresses. (1)

Here, the subscripts ‖,∧,⊥ indicate parallel, cross and perpendicular directions relative to

the local magnetic field B(x). A strongly magnetized plasma species is defined as one that

has a small collision frequency ν compared to the gyrofrequency ωc and small gyroradius

% ≡ vT/ωc compared to cross and perpendicular gradient scale lengths of plasma properties

and electromagnetic fields. For strongly magnetized toroidal plasmas of fusion interest a

small gyroradius expansion is usually appropriate:

δ ≡ %/a� 1, small gyroradius expansion. (2)

Here, a is a characteristic macroscopic plasma dimension, typically the plasma minor radius.

For arbitrary flow velocity magnitudes and properties, the characteristic scalings of the

parallel, cross and perpendicular stresses can be written for R0q >∼ λ >∼ a as

π‖ ∼ νλ2∇‖V, π∧ ∼ ν%λB×∇V/B ∼ δπ‖, π⊥ ∼ ν%2∇⊥V ∼ δ2 π‖, scalings. (3)

Thus, the parallel viscous stress π‖ is usually dominant in small gyroradius, magnetized

toroidal plasmas. The remainder of this report will concentrate on it. [For plasma pertur-

bations extended long distances along field lines (i.e., |∇‖| <∼ 1/a) but radially localized to

a small fraction of the minor radius (i.e., |∇⊥| ∼ k⊥ � 1/a), the cross and perpendicular

stress effects can become larger than this scaling indicates by factors of k⊥a and (k⊥a)2; for

such cases the cross (gyroviscous) force can exceed the parallel stress force — as is the case

for many perturbed diamagnetic flow effects on MHD-type instabilities.]
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The parallel viscous stresses for electrons and ions were originally written by Braginskii

[4] for each species in the form (here, z is the local coordinate along B)

π‖ = − η0Wzz, Wzz ≡ 2
∂Vz
∂z
− 2

3
(∇·V). (4)

For an electron-ion plasma with a hydrogenic ion species (i.e., Zi=1), the collisional viscosity

coefficients for electrons and ions are [4] (τ ≡ 1/ν, λ ≡ vT/ν and vT ≡
√

2T/m)

ηi0 = 0.96niTi τi = 0.48mini νiλ
2
i , ηe0 = 0.73neTe τe = 0.365mene νeλ

2
e. (5)

The parallel stresses can be written in general (for arbitrary collisionality in an inhomo-

geneous magnetized plasma) in the Chew-Goldberger-Low form as [5]

π‖ ≡ π‖ (b̂b̂− I/3), b̂ ·π‖· b̂ = (2/3) π‖, parallel stress tensor. (6)

Here, π‖(x, t) ≡ p‖ − p⊥ is the pressure anisotropy, which is a scalar function of space and

time. Also, b̂ ≡ B/B is a unit vector along the local magnetic field B and I is the identity

tensor (dyad). In the Braginskii high collisionality regime π‖ is given for each species by

π‖ ≡ − (3/2) η0 b̂ ·WV · b̂, collision-induced pressure anisotropy, (7)

in which the rate of strain in the plasma species induced by the flow velocity V is

WV ≡∇V + (∇V)T − (2/3) I (∇·V), rate of strain induced by V. (8)

The superscript T is the transpose of that tensor (dyad); thus, WV is a symmetric tensor.

The Braginskii [4] closures for the parallel viscous stress π‖ were developed for MHD-type

applications where the flow velocity V is assumed to be large compared to the heat flow

velocity Vq ≡ − 2q/5nT and higher order flow-type moments (energy-weighted heat flow

etc.) — but still gyroradius small compared to thermal speeds: |V|/vT ∼ δ � 1. However,

in two-fluid treatments which include diamagnetic flows, the diamagnetic-type heat flows Vsq

are comparable to the diamagnetic flows Vs∗ ≡ B×∇ps/(nsqsB2) and cannot be neglected.

Then, the rate of strain tensor is modified [6]: WV → WV + Wq, where the rate of strain

tensor for heat flows is

Wq ≡ (−2/5nT ) [∇q + (∇q)T − (2/3) I (∇· q) ]. (9)

Similarly, the stress tensor gets modified: π → πV + πq, in which πq represents parallel

heat stresses. Viscosity coefficients including these heat flow effects and allowing for impure

plasmas (i.e., for Zeff ≡
∑

i niZ
2
i /ne > 1) are discussed in Appendix A.
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III. VISCOUS FORCE INDUCED BY COLLISIONAL PARALLEL STRESSES

Next, various geometric forms of the pressure anisotropy and the viscous force they induce

will be explored. Using various vector and tensor identities and the definition of the local

curvature of the magnetic field, κ ≡ (b̂ ·∇)b̂ = − b̂×(∇×b̂) with b̂ ≡ B/B, it can be

shown that

B ·WV ·B/2 = B ·∇V·B− (B2/3) (∇·V)

= B (B ·∇)(B ·V/B) + [B×(B×V)] ·κ− (B2/3)∇·V

= BV·∇B + B ·∇×(V×B) + (2B2/3)∇·V − (B ·V)(∇·B). (10)

The form on the last line will be used below — because, as discussed below, its first term is

the only term that survives on longer than collision times scales, after the faster MHD-type

compressional Alfvén and sound wave relaxation processes come into quasi-equilibrium. The

representation of B ·Wq ·B is similar with V→ q.

In order of appearance in the last line of (10), contributions to B ·WV ·B have the fol-

lowing effects. The first, V·∇B term indicates parallel strain induced by flow in directions

in which the magnitude of the magnetic field varies. Since the lowest order flows are within

a flux surface, this term mainly produces poloidal flow damping, at a rate proportional to

the collision frequency ν (for each species). The second term represents MHD-type advec-

tion of the parallel component of the magnetic field, as is evident from its linearized form

B0 ·∇×(Ṽ×B0) ∼ B0 ∂B̃‖/∂t. Together with part of ∇·V, it provides viscous damping of

“fast” compressional Alfvén waves, which to lowest order relax P̃ + B0B̃‖/µ0. The third,

∇·V term represents plasma compressibility. Its residual after the fast relaxation of com-

pressional Alfvén waves provides viscous damping of sound waves on the ion collision time

scale. Because there are no magnetic monopoles in the universe, the final, ∇·B term van-

ishes; however, this term could be kept in extended MHD codes to assist in “divergence

B cleaning” — i.e., for relaxing away via viscous damping any numerical errors that cause

∇·B 6= 0. For simplicity the analogous effects due to heat flows Vq ≡ − (2q/5nT ) will

be neglected on the MHD compressional Alfvén and sound wave time scales; however, heat

flow effects will be retained on the collision (poloidal flow damping) time scales.

The M3D and NIMROD extended MHD codes use semi-implicit numerical algorithms to

take time steps longer than MHD wave time scales while capturing the constraints imposed
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by these processes. Thus, for analytic purposes, on collision time scales the last form of (10)

can be simplified by taking ∇·V = 0 and ∇·B = 0. In addition, since on the collision time

scale perpendicular flows are B×∇φ/B2 plus diamagnetic flows in approximately the form

V⊥ = (1/B2)B×∇f , in which f = f(ψp) is a scalar flux function, one has B ·∇×(V×B) =

B(B ·∇f)(b̂ ·∇×b̂) ∼ (k‖a) β. As indicated, this term is small for typical plasma responses

that are highly extended along field lines and for low β plasmas; thus, this contribution

will be neglected henceforth. With all these simplifications, on the collision time scale the

“residual” pressure anisotropy induced by the combination of flows and heat flows is (see

Appendix A for how the viscosity coefficients are determined for impure plasmas)

π‖ ' −
3

B

(
η00V·∇B − η01

2

5nT
q ·∇B

)
, on collision or longer time scales. (11)

The viscous force density caused by the parallel stress tensor π‖ defined in (6) is in general

Fπ ≡ −∇·π‖ = − π‖ [ κ−B (B ·∇B)/B3]− (1/B2) B (B ·∇)π‖ + (1/3)∇π‖. (12)

And the parallel (B · ) component of this viscous force is

B ·Fπ ≡ −B ·∇·π‖ = π‖ (b̂ ·∇B)− (2/3) (B ·∇) π‖, parallel viscous force. (13)

The last term will be annihilated below by averaging this parallel force over a flux surface.

Up to now neither the magnetic field structure nor a coordinate system have been spec-

ified. However, they are needed to connect these results with axisymmetric neoclassical

transport theory [7, 8]. The axisymmetric equilibrium magnetic field B0 ≡ Bt + Bp has

toroidal and poloidal components. It is written in terms of the poloidal magnetic flux ψp:

B0(ψp, θ) = I∇ζ +∇ζ×∇ψp =∇ψp×∇[ q(ψp) θ − ζ ], I(ψp) ≡ RBt. (14)

The radial, poloidal straight-field-line and toroidal axisymmetry coordinates will be taken

to be ψp, θ, ζ for which the poloidal rotation of a field line per unit toroidal rotation is

dθ/dζ = 1/q(ψp) ≡ B0·∇θ/B0·∇ζ. The Jacobian for transforming from the laboratory (x)

to these (non-orthogonal) curvilinear coordinates is
√
g ≡ 1/(∇ψp ·∇θ×∇ζ) = 1/B0·∇θ.

The flux surface average (FSA) of a scalar function f(x) on a ψp flux surface is defined by

〈f(x)〉 ≡
∫ 2π

0
dζ
∫ 2π

0
f(x) dθ/B0·∇θ

2π
∫ 2π

0
dθ/B0·∇θ

, flux surface average of f(x). (15)

The FSA is an annihilator for parallel derivatives of scalar functions: 〈B0·∇f〉 = 0.
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On the collision and longer time scales the flow and heat flow are incompressible [7, 8]:

∇·V = 0, ∇· q = 0. Since to first order in the small gyroradius expansion (δ � 1) the

flows and heat flows lie within flux surfaces, using the general relation for the divergence of

a vector in an axisymmetric system one can show for each plasma species that [8]

0 =∇·V = (V·∇θ) ∂

∂θ

(
V·∇θ
B0·∇θ

)
=⇒ Uθ(ψp) ≡

V·∇θ
B0·∇θ

, poloidal flow function. (16)

Similarly, ∇· q = 0 yields Qθ(ψp) ≡ q ·∇θ/B0·∇θ. Thus, to lowest order in δ the FSA of

(13) yields the residual parallel viscous force for each species (here, b̂ ≡ B0/B0):

〈B0 ·Fπ〉 ≡ − 〈B0·∇·π‖〉 ' − 3 〈 (b̂ ·∇B0)2〉 [ η00 Uθ + η01 (− 2/5nT )Qθ ]. (17)

IV. VISCOUS FORCES FOR EXTENDED MHD CODES

Extensions of the flux surface average (FSA) collisional parallel viscous force in (17) to

the low collisionality regimes of axisymmetric tokamak plasmas have been developed [8];

these “neoclassical” results are discussed and summarized in Appendix B. For the present

purposes it is convenient to specify the FSA of the residual parallel viscous force in terms

of a damping force on the poloidal flow Uθ to an “intrinsic” or “offset” flow velocity U0
θ in

the general form (for each plasma species, subscript s)

〈B0 ·Fsπ〉 ≡ − 〈B0 · ∇ ·πs‖〉 = −msns µs 〈B2
0〉(Usθ − U0

sθ), FSA ‖ viscous force, (18)

U0
sθ ≡ ks

I(ψp)

qs〈B2
0〉
dTs0
dψp

, offset poloidal flow. (19)

Formulas for the poloidal viscous damping frequency µs and offset poloidal flow coefficient

ks, which depend on the species and collisionality regime, are specified in Appendix B.

In general, the offset poloidal flow U0
sθ, which is proportional to the poloidal heat flow,

does not depend solely on the temperature gradient of the species being considered. Rather,

in tokamak plasmas with small admixtures of impurities in addition to the dominant hyro-

genic species, it depends on impurity density and temperature gradients, and the impurity

collisionality regime [9]. In transport codes the offset poloidal flow U0
sθ is often evaluated

using the NCLASS code [10]. However, as discussed in [9], if the impurities are in the inter-

mediate (plateau) or high (Braginskii, Pfirsch-Schlüter) collisionality regime, U0
iθ depends

predominantly on the ion temperature gradient, as indicated in (18). Thus, as discussed
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further in Appendix B, it will be assumed that the form of (19) provides a sufficient repre-

sentation of the effects of small admixtures of impurities in extended MHD codes.

The general form for the viscous force induced by pressure anisotropy is given in (12). The

key question is: what should be used for the pressure anisotropy π‖ ≡ p‖ − p⊥? The answer

for MHD-type responses is the combination of π‖ given by (7) with the B ·WV ·B/2 given by

(10) since on the fast compressional Alfvén and sound wave relaxation time scales the heat

flows Vq can be neglected. After dissipation of MHD-type compressional Alfvén and sound

waves with the Braginskii parallel viscous damping coefficient η00, the residual contribution

to (10) on collision and longer time scales is the first term, BV·∇B, as indicated in (11).

For that term the general multi-collisionality regime result for the flux surface average of

the residual parallel viscous force can be written in the form given in (18), which is a

generalization of the corresponding Braginskii form given in (17). To capture all these

properties within a single viscous force it is proposed to leave the viscous force effects on

compressional Alfvén and sound waves unchanged with the Braginskii η00 coefficient but to

modify the BV·∇B term in (10) and (11) so the flux surface average it produces is given

by (18). Thus, the proposed pressure anisotropy for each species is (here b̂ ≡ B0/B0)

π‖ = − mnµ 〈B2
0〉

b̂ ·∇B0

〈 (b̂ ·∇B0)2〉
(
Uθ − U0

θ

)
− 3 η00

(
B ·∇×(V×B)

B2
+

2

3
∇·V − (B ·V)(∇·B)

B2

)
,

proposed form. (20)

Thus, the suggested prescription for introducing viscous force effects due to parallel stresses

into the M3D and NIMROD extended MHD codes is to implement the viscous force given by

(12) with the pressure anisotropy π‖ given in (20) using µs from (B8), (B12), (B14) and ks

from (B11), (B13), (B15) in Appendix B. Formulas for the needed Braginskii-type collisional

viscosity coefficients ηs00 for electrons, ions in impure plasmas are given in (A11), (A17).

Various heuristic viscous forces have been implemented and tested in reduced MHD codes

[12–14]. Heuristic forms previously tested in the NIMROD code are discussed in [15]. The

most successful heuristic form used in NIMROD is [15] Fπ = −mnµ〈B2〉(V · eθ) eθ/(B · eθ)2,

in which eθ =
√
g∇ζ×∇ψp = Bp/(B0·∇θ) is the covariant base vector. This form is

obviously simpler than the form proposed in (18)–(20). However, the more general viscous

force proposed here has the advantage that it captures the usual Braginskii viscous force as

well as the residual multi-collisionality effects and offset flows U0
sθ on long time scales.
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V. VERIFICATION TESTS FOR VISCOUS FORCE EFFECTS

In implementing this suggested procedure for including the viscous force effects due to

multi-collisionality parallel stresses in extended MHD codes, three categories of verification

tests are suggested: fast MHD-type processes, relaxation of flows, and transport-time-scale

effects — as discussed in the succeeding paragraphs.

Fast MHD-type processes: Generally speaking, viscous force effects should be negligible

and have no significant effects on ideal-MHD-type plasma responses. Thus, the first verifi-

cation test is to make sure adding the viscous force effects “do no harm” to these responses.

Relaxation of flows: The electron viscous force effects add to the magnetic field evolution

equation a fourth order derivative, diffusive- (parabolic-) type term (via Ve = Vi − J/nee

with µ0J ≡ ∇×B), which is sometimes called a “hyper-resistivity” effect. While this is

useful in dissipating magnetic field structures that are highly localized radially, it should

not affect other physical processes much. Similarly, the ion viscous force adds a diffusive

effect to the momentum equation, primarily to its parallel component. These effects should

become significant on the electron and ion collision time scales, respectively; they should

dissipate compressional Alfvén and sound waves on the ion collision time scale. On time

scales longer than the respective collisional time scales the electron and ion flows should relax

to being: incompressible, of first order in the gyroradius, and flowing within an equilibrium

or average flux surface. Specifically, they should be described by Eqs. (18) to (47) in [11].

Suggested verification tests would be to check that, on time scales longer than the respective

collision times: 1) electron and ion flows are incompressible to O{δ2} as indicated in (16)

above and Eq. (22) in [11]; 2) the poloidal flow function Uθ ≡ V·∇θ/B0·∇θ is approximately

constant on flux surfaces (to order O{δ}); 3) the current density J is as given in Eqs. (26)

and (29) in [11]; 4) the FSA neoclassical Ohm’s law given in Eq. (39) in [11] is obtained with

the parallel resistivity given by (40) and bootstrap current by (41); 5) the poloidal ion flow

is as indicated in Eqs. (44) and (45) in [11]; 6) the radial flows V·∇ψp for both electrons

and ions are order δ smaller than the corresponding poloidal and toroidal flows within flux

surfaces; and 7) for an axisymmetric equilibrium B0 field and a pressure anisotropy π‖ that

is independent of the toroidal angle, the viscous force does not cause a toroidal torque on

either plasma species (i.e., 〈R2∇ζ · ∇ ·π‖〉 = 0). Ultimate verification and validation of the

proposed form for π‖ given by (20) and the viscous force it causes will be through detailed
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comparisons for a wide range of applications with results from kinetic-based approaches,

such as those being developed by Held et al. [16].

Transport-time-scale effects: The main residual viscous force effects induced by collision-

induced parallel viscous stresses on the long transport time scale are (analytically) to enforce

ambipolarity through first order in the gyroradius (via Eqs. (42)–(45) of [11]) and to cause

the banana-plateau (ambipolar) neoclassical radial particle flux, as indicated in Eq. (89) in

[11]. In addition, their inclusion facilitates the analytic derivation of a toroidal flow (rotation)

equation on the transport time scale, Eq. (119) of [11]. Suggested verification tests would

be to: 1) obtain the banana-plateau radial particle flux indicated in Eq. (89) of [11] and

check that it is ambipolar; and 2) show that the toroidal flow obeys the toroidal rotation

evolution equation given by Eq. (119) in [11], after irrelevant terms there are eliminated.

VI. DISCUSSION AND SUMMARY

As indicated by the boxed equations above and the paragraph after (20), a new pro-

cedure has been proposed for including viscous force effects caused by collision-induced

parallel viscous stresses in high (Braginskii [4], Pfirsch-Schlüter), intermediate (plateau)

and low (banana) collisionality regimes. The proposed procedure uses standard Braginskii

collisional viscous forces with coefficients η0 for relaxing MHD-type responses, but a new

multi-collisionality regime residual viscous force on collision time scales. Specifically, the

new procedure uses the normal CGL pressure tensor form in (6) and viscous force definition

in (12), but suggests a new form for the pressure anisotropy given by (20). The multi-

collisionality regime poloidal flow viscous damping frequency µs is given in (B8), (B12),

(B14) and the constant ks for the intrinsic poloidal flow U0
sθ defined in (19) is given by

(B11), (B13), (B15). The relevant collisional (Braginskii) regime viscosity coefficients ηs00

for electrons, ions in impure plasmas, as is typical in tokamaks, are defined in (A11), (A17).

Some issues and limitations regarding use of this procedure to represent viscous force

effects due to collisional parallel viscous stresses in various collisionality regimes are: 1) Is

the form of the viscous force given by the combination of (12) and (20) really the best or

most appropriate form? 2) Are long scale (� πR0q) parallel variations in flow components

appropriately and adequately relaxed with the Braginskii η00 viscosity coefficients even in

low collisionality regimes where “collisionless” closures [16, 17] become relevant? 3) While
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the exponential temporal decay of poloidal flows resulting from (18) is not precisely correct

in low collisionality regimes [18], is this residual viscous force sufficient, except perhaps

for applications where the poloidal flow dynamics is critical, since it produces the correct

equilibrium flows? 4) Are the approximations that lead to the “offset” poloidal flows U0
sθ

sufficiently accurate for extended MHD modeling in the M3D and NIMROD codes? and 5)

While the poloidal variation of the viscous force in the banana collisionality regime [19] is not

correct, is this residual viscous force sufficient, except perhaps for applications that depend

critically on the poloidal variation of viscous force effects, since its flux-surface average is

correct?

The fate of this proposal in extended MHD codes will depend on the practicality of its

implementation and its usefulness in capturing the most important viscous force effects in

low collisionality toroidal plasmas in the M3D and NIMROD codes.
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Appendix A: Collisonal (Braginskii-type) Viscosities

The Braginskii [4] closures for the parallel viscous stress π‖ were developed for collisional

plasmas (i.e., |λ∇V| � 1) and MHD-type applications where the flow velocity V is of

order the E×B flow velocity and large compared to the diamagnetic flows. In particular,

V is assumed to be large compared to the heat flow velocity Vq ≡ (−2q/5nT ) and higher

order flow-type moments (energy-weighted heat flow etc.) — but still gyroradius small

compared to thermal speeds: |V|/vT ∼ δ � 1. However, as noted at the end of Section II,

since two-fluid treatments include diamagnetic flows, the diamagnetic-type heat flow Vq is

comparable to the diamagnetic flow V∗ and cannot be neglected. Then, the rate of strain
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tensor is modified: WV → WV + Wq in which the rate of strain tensor for heat flows is

given in (9). Similarly, the stress tensor gets modified: π → π0 + π1 + · · · ≡ πV + πq + · · · .

Here, the subscript indicates the order j of the energy weighting Laguerre polynomial in the

relevant moments of the distribution function (v′ ≡ v −V):

πj ≡
∫
d3v′m [v′v′ − (v′2/3) I ]L

5/2
j (mv′2/2T ) f(x,v, t), (A1)

in which L
5/2
j (x) are Laguerre polynomials: L

5/2
0 = 1, L

5/2
1 = 7/2− x, · · · .

Taking the
∫
d3v′m b̂ · [v′v′ − (v′2/3) I ] · b̂L5/2

j (mv′2/2T ) moments with j = 0, 1 of a

Chapman-Enskog form of the collisional equilibrium (∂/∂t < νs) plasma kinetic equation

and neglecting higher order (in a collisional regime) b̂ · (π · ∇V) · b̂ viscous-dissipation-type

terms yields a matrix equation for each plasma species:

ns Ts

 b̂ ·Ws
V · b̂

b̂ ·Ws
q· b̂

 = − 6

5 τss
Gs ·

 (2/3) πs0‖

(2/3) πs1‖

 . (A2)

Here, τss is a reference self-collision frequency for a plasma species s that is defined by

1

τss
≡ 4

3
√
π

4π nsq
4
s ln Λ

{4πε0}2ms v3
Ts

, reference collision frequency. (A3)

The matrix Gs is a 2 × 2 matrix of Coulomb collisional “drag” coefficients on the stresses

that result from the parallel stress moments of the collision operator. The parallel viscous

stresses πs0‖ and πs1‖ will be obtained by multiplying this equation by the inverse G−1
s of

the matrix Gs for each species s. [If higher order energy moments are included (i.e., j ≥ 2),

they yield (j+1)× (j+1) matrices and j+1 equations; however, after inverting the larger Gs

matrices the results obtained below change less than the 1/ ln Λ ∼ 6 % intrinsic accuracy of

the Fokker-Planck Coulomb collision operator and hence are not warranted.)

The collisional matrix and its inverse can be written in general as [8, 20]

Gs = Z

 1 3
2

3
2

17
4

+
1√
2

 1 3
4

3
4

205
48

 , G−1
s =

 17Z
4

+ 205
48
√

2
−(3Z

2
+ 3

4
√

2
)

−(3Z
2

+ 3
4
√

2
) Z + 1√

2


2Z2 + 301Z/48

√
2 + 89/48

. (A4)

Here, the first matrix in Gs represents collisions of a species s with a species s′ of charge Z

that has a much larger mass (ms′ >> ms) and the second matrix represents self-collisions
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within the s species. Dotting the inverse G−1
s with (A2) yields the collisional pressure

anisotropy induced by the flow and heat flow rates of strain within the s species of

πs‖ = − (3/2) [ ηs00 b̂ ·Ws
V · b̂ + ηs01 b̂ ·Ws

q · b̂ . (A5)

Here, the viscosity coefficient for each species s are

ηs00 =
5

6
G−1
s00 nsTs τss =

5

6

17Z/4 + 205/48
√

2

2Z2 + 301Z/48
√

2 + 89/48
nsTs τss, (A6)

ηs01 =
5

6
G−1
s01 nsTs τss = − 5

6

3Z/2 + 3/4
√

2

2Z2 + 301Z/48
√

2 + 89/48
nsTs τss. (A7)

For an electron-ion plasma with a hydrogenic ion species (i.e., Z = 1), νe = 1/τee and the

numerical coefficient in ηe00 is 0.73, in agreement with the Braginskii coefficient ηe0 given in

(5). For only one species of ions Z → 0 in (A6), τii ≡ τi = 1/(
√

2 νi) and the numerical

coefficient in ηi00 from (A6) is (5/6)(205/89
√

2)(1/
√

2) = 0.96, in agreement with ηi0 in (5).

Typical tokamak plasmas have small admixtures of impurity (non-hydrogenic) ions. For

collisions of electrons with hydrogenic ions (subscript i, Zi=1) and various types of impurity

ions (subscript I, charge ZI), the effective ion charge is

Zeff ≡
ni +

∑
I nIZ

2
I

ne
, ion charge for electron collisions in an impure plasma. (A8)

The electron collision frequency and length are defined for an impure plasma by

νe ≡
4
√

2π (
∑

i niZ
2
i ) e4 ln Λ

{4πε0}2 3m
1/2
e T

3/2
e

' 5×10−11 ne(m
−3)Zeff

[Te(eV)]3/2

(
ln Λ

17

)
, (A9)

λe =
vTe
νe
' 1.2×1016 [Te(eV]2

Zeff ne(m
−3)

. (A10)

For an impure plasma the electron viscosity coefficients obtained from (A6) and (A7) are

ηe00 =
5

12

17Z2
eff/4 + 205Zeff/48

√
2

2Z2
eff + 301Zeff/48

√
2 + 89/48

mene νeλ
2
e, (A11)

ηs01 = − 5

12

3Z2
eff/2 + 3Zeff/4

√
2

2Z2
eff + 301Zeff/48

√
2 + 89/48

mene νeλ
2
e. (A12)

With only hydrogenic ions (Zeff → 1), ηe00 reduces to the Braginskii ηe0 in (5).

For collisions of hydrogenic ions (subscript i, Zi = 1) with various heavier impurity ions

(subscript I, charge ZI) the effective ion charge is

Z∗ ≡
∑

I nIZ
2
I

ni
, ion charge for hydrogenic ion collisions in an impure plasma. (A13)
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Note that the effective ion charge for electron collisions can be written in terms of this

effective charge for hydrogenic ions via Zeff = (ni/ne)(1 + Z∗) or Z∗ = [(ne/ni)Zeff − 1].

The ion collision frequency and length can be defined for an impure plasma in terms of the

conventional deuterium (mass mD) ion collision frequency [1/τii = νi
√

2/(1 +
√

2Z∗)]:

νi ≡
4
√
π(ni +

√
2
∑

I nIZ
2
I )e4 ln Λ

{4πε0}2 3m
1/2
i T

3/2
i

' 5.8×10−13ni(m
−3)(1 +

√
2Z∗)

(mi/mD)1/2 [Ti(eV)]3/2

(
ln Λ

17

)
, (A14)

λi =
vT i
νi
' 1.7×1016 [Ti(eV]2

(1 +
√

2Z∗)ni(m
−3)

m. (A15)

Neglecting the small variations in the ln Λ coefficients, the ion collision frequency in an

impure plasma can be written in terms of the electron collision frequency in (A9):

νi =
ni
ne

(
me

mi

)1/2(
Te
Ti

)3/2
1 +
√

2Z∗√
2Zeff

νe ∼ 10−2 νe. (A16)

For an impure plasma the ion viscosity coefficients obtained from (A6) and (A7) are

ηi00 =
5(1 +

√
2Z∗)

12
√

2

17Z∗/4 + 205/48
√

2

2Z2
∗ + 301Z∗/48

√
2 + 89/48

mini νiλ
2
i , (A17)

ηi01 = − 5(1 +
√

2Z∗)

12
√

2

3Z∗/2 + 3/4
√

2

2Z2
∗ + 301Z∗/48

√
2 + 89/48

mini νiλ
2
i . (A18)

With only hydrogenic ions (Z∗ → 0), ηi00 reduces to the Braginskii ηi0 in (5).

Appendix B: Viscosity Coefficients For Multi-Collisionality Regimes

There is one fundamental approximation used in obtaining the Braginskii viscous stresses

that is not appropriate for extended MHD descriptions of tokamak plasmas. Namely, the

collision length is assumed to be shorter than parallel inhomogeneity scale lengths of the

flow velocity V (i.e., |λ∇‖V| � |V|). It is proposed here that this shortcoming be rectified

by incorporating neoclassical-based closures for collisional effects on the residual parallel

viscous force [8]. The lowest (banana) collisionality regime will be discussed first; next,

scalings of low, intermediate and high collisionality regimes will be discussed. Finally, multi-

collisionality forms for the flux surface average (FSA) of the residual parallel viscous force

will be developed.

The low collisionality “banana” regime [7, 8] is defined to be that where trapped particles

circumnavigate their banana drifts orbits without suffering enough collisions to scatter them
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out of the trapped particle region of velocity space. In a fluid description the consequences of

this physics are captured [8] through the residual parallel viscous force induced by collisions

of untrapped (circulating) particles that carry the flow with “immobile” trapped particles.

In the banana collisionality regime the residual parallel viscous force can be written [8] for

each species in the form of the corresponding FSA of the Braginskii closure relation in (17):

〈B0 ·Fπ〉 ≡ − 〈B0·∇·π‖〉 = −mn 〈B2
0〉 [µ00Uθ − µ01 (2/5nT )Qθ ]. (B1)

The poloidal flow damping frequencies on the flows and heat flows can be written for electrons

colliding with ions of charge Z as [see Eqs. (4.18), (4.20), (4.21) and (4.61)–(4.63) in [8]]:

µe00 =
[
Z+
√

2− ln(1+
√

2)
] ft
τeefc

' Z + 0.533

Z
(1.46

√
ε ) νe, (B2)

µe01 = −
[(
Z+

1√
2

)
− 5

2
[Z+
√

2−ln(1+
√

2)]

]
ft
τeefc

' 1.5Z+0.625

Z
(1.46

√
ε ) νe. (B3)

As for the collisional viscosity coefficients in (A6) and (A7), the ion banana regime poloidal

flow damping coefficients are obtained by setting Z → 0, τee → τii in the first forms. In

(B2) and (B3) the flow-weighted fraction of circulating particles fc is defined by [8, 9]

fc ≡
3

4
〈B2

0〉
∫ 1/Bmax

0

λ dλ

〈
√

1− λB0(θ) 〉
' 1− 1.46

√
ε+ 0.46 ε

√
ε, circulating particle fraction.

(B4)

The complementary fraction of trapped particles is ft ≡ 1− fc ' 1.46
√
ε− 0.46 ε

√
ε. In the

approximate forms at the end of all these formulas the variation of the magnetic field strength

on a magnetic flux surface has been approximated by B0 ' B0R0/R ' B00(1 − ε cos θ) in

which ε = (Bmax−Bmin)/(Bmax+Bmin) ' r/R0 � 1.

If the residual parallel viscous force in (B1) is dominant in the FSA parallel momentum

equation of a plasma species, it forces the poloidal flow to an “offset” value determined by

the poloidal heat flow: U0
θ = (µ01/µ00) (2/5nT )Qθ. In the banana collisionality regime, to

lowest order in
√
ε, collisions force the parallel ion heat flow to zero and poloidal heat flow

is induced by the diamagnetic ion heat flow; then, it is given by [7, 8, 11] (2/5niTi)Qiθ '

[I/(qi〈B2
0〉)] dTi0/dψp. Thus, the poloidal ion offset flow velocity is (for

√
ε� 1)

U0
iθ '

µi01

µi00

2

5niTi
Qiθ '

0.625

0.533

I

qi〈B2
0〉
dTi0
dψp

' 1.17
1

Bp

1

ZieB0

dTi0
dr

, banana regime. (B5)

This result indicates a diamagnetic-type offset poloidal ion flow speed of Vip ' BpU
0
iθ '

[1.17/(ZieB0)](dTi0/dr) driven by the ion radial temperature gradient, a familiar asymptotic

limit in neoclassical transport theory [7, 8].
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Collisionality regimes in tokamak plasmas are defined by the ratio of the effective collision

frequency of trapped particles νeff ∼ ν/f 2
t ∼ ν/ε to their bounce frequency ωb ∼

√
ε vT/R0q:

ν∗ ≡
νeff

ωb
=

ν

ε3/2(vT/R0q)
=

R0q

ε3/2λ
, collisionality regime parameter. (B6)

The three relevant collisionality regimes (for each species) are

ν∗ � 1, low (banana) collisionality regime,

1� ν∗ � ε−3/2, intermediate (plateau) collisionality regime,

ε−3/2 � ν∗, high (Braginskii, Pfirsch-Schlüter) collisionality regime.

(B7)

The FSA residual parallel viscous force in the banana regime was defined in (B1). The

Pfirsch-Schlüter regime is [7, 8] the high collisionality Braginskii regime whose FSA parallel

viscous force, which is of the same form as (B1), was given in (17). The plateau regime is

an intermediate collisionality regime where typical untrapped particles are collisionless, but

trapped and low parallel velocity particles drift radially off flux surfaces, which causes radial

plasma transport and parallel viscous forces. The FSA of the residual parallel viscous force

in the plateau collisionality regime can also be written in the same form as (B1) with viscous

damping coefficients that can be obtained from (4.65) in [8]. Their poloidal flow damping

frequencies scale as µ ∼ ε2vT/R0q, i.e., independent of collision frequency.

For extended MHD simulations it is convenient to specify the FSA of the residual parallel

viscous force in terms of the damping of the poloidal flow to an “offset” flow velocity U0
θ in

the form (for each plasma species) indicated in (18) and (19). Multi-collisionality forms of

the parallel viscosity coefficients µe, µi for electrons, ions have been developed [7–9]. They

can be written in the form [7] µ ∼
√
ε ν/[(1 +ν

1/2
∗ +ν∗)(1 + ε3/2ν∗)], with various order unity

numerical factors in front of each of the factors. Here, the ν
1/2
∗ factor in the denominator

arises from [7] collisional boundary layer effects in the vicinity of the velocity-space boundary

between trapped and untrapped (circulating) particles.

In general the offset poloidal ion flow U0
iθ in (19) and (B5) depends on impurity density

and temperature gradients, and the collisionality regimes of impurities as well as that of the

dominant ion species [9]. In transport codes the constant ki is often evaluated using the

NCLASS code [10]. However, since impurity collision frequencies are usually much larger

than ion collision frequencies, impurities have higher ν∗ values (ν∗I/ν∗i ∼ Z2
I � 1); hence,

they are often in the plateau or even Pfirsch-Schlüter collisionality regimes. There, it can
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be shown [9] that to lowest order the offset poloidal ion flow U0
iθ is proportional to the ion

temperature gradient as indicated in (19) with the coefficient ki determined mainly by the

collisionality regime of the hydrogenic ions. Very deep in the ion banana collisionality regime

(i.e., ν∗i � 1) the impurity ion density and temperature gradient effects should be taken

into account by using NCLASS [10] to obtain the offset flows U0
iθ. However, this very low

hydrogenic ion collisionality regime is only barely reached in most present tokamak plasmas

and when impurity flows become important one should really be solving three-fluid equations

that include impurity density, momentum and energy equations. Thus, for the purpose of

extended MHD codes it will be assumed that the offset poloidal flows U0
sθ can be represented

in terms of the respective temperature gradients as indicated in (19).

In this work descriptions for the residual parallel viscous forces are desired that both

encompass all three collisionality regimes and asymptotically approach the low (banana)

collisionality regime results for ν∗ � 1 and the high (Braginskii) collisionality regime when

ν∗ � ε−3/2. Also, small admixtures of impurities should be allowed for since tokamak

plasmas often have Zeff ∼ 2–3. Such descriptions have been developed by Kim et al. [9] from

the general formulas presented in [8]. Using those results (but correcting the coefficient of

the Pfirsch-Schlüter term in the denominator from 1/6 to 2/3 to obtain the correct high

collisionality limit) and adding collisional boundary layer effects [7], the poloidal damping

frequency of each species s in (18) is proposed to be, in the spirit of a Padé approximation,

µs ≡ µs00 =
(ft/fc) K̂

b
00/τss[

1 + ν
1/2
∗s + 2.92 ν∗sK̂b

00/K̂
p
00

] [
1 + 2K̂p

00/(3ωtsτssK̂
PS
00 )
] . (B8)

Here, K̂b
00, K̂p

00 and K̂PS
00 quantities are dimensionless viscosity coefficients in the banana,

plateau and Pfirsch-Schlüter collisionality regimes, respectively; they are given in Table I.

The collisionality parameter ν∗s is solely a function of the poloidal flux ψp and is specified

for a general axisymmetric magnetic field geometry by [9] (for each species)

ν∗s ≡
ft/fc
1.46

ωts
v2
Tsτss

〈B2
0〉

2〈(b̂ ·∇B0)2〉
∼ νs

ε3/2vTs/R0q
, general collisionality parameter.

(B9)
Also, the characteristic transit frequency for each species of untrapped particles is

ωts ≡ vTs/R0q, transit frequency. (B10)

As indicated in (B9), in a large aspect ratio tokamak where
√
ε � 1 one obtains ft/fc ∼

1.46
√
ε, 〈B2

0〉 ' B2
0 and 〈(b̂ ·∇B0)2〉 ' ε2B2

0/(2R
2
0q

2) and (B9) reduces to the usual (B6).
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TABLE I: ASYMPTOTIC DIMENSIONLESS VISCOSITY COMPONENTS.

In impure plasmas Z → Zeff for electrons, Z → Z∗ for ions and Z → 1/Z∗ for impurities.

In the rightmost column D ≡ (6/5)(2Z2 + 301/48
√

2 + 89/48) ' 2.40Z2 + 5.32Z + 2.225.

collisionality
regime: banana (b) plateau (p) Pfirsch-Schlüter (PS)

K̂00 Z +
√

2− ln(1+
√

2)
√
π (17Z/4 + 205/48

√
2)/D

' Z + 0.533 ' 1.77 ' (4.25Z + 3.02)/D

K̂01 Z + 1/
√

2 3
√
π (7/2)(23Z/4 + 241/48

√
2)/D

' Z + 0.707 ' 5.32 ' (20.13Z + 12.43)/D

K̂11 2Z + 9/4
√

2 12
√
π (49/4)(33Z/4 + 325/48

√
2)/D

' 2Z + 1.591 ' 21.27 ' (101.06Z + 58.65)/D

In the asymptotic banana regime (ν∗s → 0) the µs in (B8) reduces to (ft/fc)K̂
b
00/τss which

is the same result as was given in (B2). Similarly, in the asymptotic Pfirsch-Schlüter regime

(ν∗s � ε−3/2 or ωtsτss � 1) the µs in (B8) reduces to (3Tsτss/ms)K̂
PS
00 〈(b̂ ·∇B0)2〉/〈B2

0〉,

which in turn yields 3 ηs00〈(b̂ ·∇B0)2〉/(msns〈B2
0〉) in which the ηs00 coefficients are the gen-

eralized Braginskii coefficients given in (A6).

A multi-collisionality formula for the coefficient k in the intrinsic poloidal flow U0
θ can be

constructed similarly for each species from Eqs. (C.19)–(C.21) and Table 1 of [9]:

ks ≡
µs01

µs00

=
5

2
− K̂01

K̂00

=
5

2
− K̂b

01

K̂b
00

1 + ν
1/2
∗s + 2.92 ν∗sK̂

b
00/K̂

p
00

1 + ν
1/2
∗s + 2.92 ν∗sK̂b

01/K̂
p
01

1 + 2K̂p
00/(3ωtsτssK̂

PS
00 )

1 + 2K̂p
01/(3ωtsτssK̂

PS
01 )

.

(B11)

To lowest order in
√
ε, for hydrogenic ions and no impurities (Zeff → 1), ki is 1.17, −0.5

and −1.6 in the banana, plateau and Pfirsch-Schlüter collisionality regimes. Similarly, for

electrons, hydrogenic ions and no impurities, ke is 1.39, −0.5 and −2.0 in these regimes.

These coefficients for the poloidal flow damping frequency µ and coefficient k in the

offset poloidal flow yield numerically correct FSA parallel viscous forces (B1) and (17) in

the asymptotic limits of the banana and Pfirsch-Schlüter collisionality regimes. However,

they overestimate them slightly in intermediate collisionality regimes — the µ value can be

a factor of order 1.4 too large in the plateau collisionality regime (see Fig. 1 in [8]).
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In the large aspect ratio limit
√
ε � 1 the viscous damping frequency µ and offset flow

coefficient k can be simplified. Namely, using the definition in (B8) and the specifications

of the coefficients in Table I one obtains for electrons

µe '
1.46
√
ε(1 + 0.533

Zeff
) νe[

1 + ν
1/2
∗e + 1.65(1 + 0.533

Zeff
)ν∗e

] [
1 + 1.18

2.4Z2
eff+5.32Zeff+2.225

Zeff(4.25Zeff+3.02)
ε3/2ν∗e

]
Zeff=2.5
' 1.77

√
ε νe

(1 + ν
1/2
∗e + 2 ν∗e)

(
1 + 1.06 ε3/2ν∗e

) . (B12)

The corresponding electron coefficient for the offset poloidal flow is

ke ' 5

2
− Zeff + 0.707

Zeff + 0.533

1 + ν
1/2
∗e + 1.65(1 + 0.533

Zeff
)ν∗e

1 + ν
1/2
∗e + 0.55(1 + 0.707

Zeff
)ν∗e

1 + 1.18
2.4Z2

eff+5.32Zeff+2.225

Zeff(4.25Z∗+3.02)
ε3/2ν∗e

1 + 3.54
2.4Z2

eff+5.32Zeff+2.225

Zeff(20.13Zeff+12.43)
ε3/2ν∗e

Zeff=2.5
' 5

2
− 1.06

1 + ν
1/2
∗e + 2 ν∗e

1 + ν
1/2
∗e + 0.70 ν∗e

1 + 1.06 ε3/2ν∗i
1 + 0.69 ε3/2ν∗e

. (B13)

The last approximate forms are appropriate for most tokamak plasmas where Zeff is often

in the range of 2–3. The electron collision frequency νe is given in (A9) and the electron

collisionality parameter ν∗e is defined in (B6) with ν → νe ≡ Zeff/τee, vT → vTe ≡
√

2Te/me

and λ → λe ≡ vTe/νe, which is given in (A10). The boundary layer term does not have a

Zeff factor in it because the full νe influences pitch-angle scattering in velocity space.

The corresponding ion poloidal viscous damping frequency is given by (for
√
ε� 1)

µi '
1.46
√
ε Z∗+0.533
Z∗+0.707

νi[
1 + ν

1/2
∗i + 1.65Z∗+0.533

Z∗+0.707
ν∗i

] [
1 + 1.18 2.4Z2

∗+5.32Z∗+2.225
(Z∗+0.707)(4.25Z∗+3.02)

ε3/2ν∗i

]
Z∗=3' 1.32

√
ε νi

(1 + ν
1/2
∗i + 1.49 ν∗i)

(
1 + 0.80 ε3/2ν∗i

) . (B14)

The corresponding ion coefficient for the offset poloidal flow is

ki ' 5

2
− Z∗ + 0.707

Z∗ + 0.533

1 + ν
1/2
∗i + 1.65Z∗+0.533

Z∗+0.707
ν∗i

1 + ν
1/2
∗i + 0.55ν∗i

1 + 1.18 2.4Z2
∗+5.32Z∗+2.225

(Z∗+0.707)(4.25Z∗+3.02)
ε3/2ν∗i

1 + 3.54 2.4Z2
∗+5.32Z∗+2.225

(Z∗+0.707)(20.13Z∗+12.43)
ε3/2ν∗i

Z∗=3' 5

2
− 1.05

1 + ν
1/2
∗i + 1.57 ν∗i

1 + ν
1/2
∗i + 0.55 ν∗i

1 + 0.80 ε3/2ν∗i
1 + 0.52 ε3/2ν∗i

. (B15)

The last approximate forms are appropriate for most tokamak plasmas where Z∗ is often in

the range of 2–4. The ion collision frequency νi is given in (A14) and the ion collisionality

parameter ν∗i is defined in (B6) with ν → νi ≡ (Z∗ + 1/
√

2)/τii, vT → vT i ≡
√

2Ti/mi and

λ→ λi ≡ vT i/νi, which is given in (A15).
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