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Abstract

Various forms of the viscous force caused by collision-induced parallel viscous stresses within
a magnetized plasma are presented. A form of it is proposed for initial value extended MHD
codes to capture the regular (Braginskii) collisional viscous force effects on short time scales and
multi-collisionality regime “residual” viscous forces on collision time scales and longer in axisym-
metric toroidal plasmas. Collision-based viscosity coefficients are described in various collisionality
regimes: high (Braginskii, Pfirsch-Schliiter), intermediate (plateau) and low (banana). Smoothed
formulas for the residual viscous forces induced by electron and ion parallel stresses on collision and
longer time scales that encompass all these collisionality regimes are presented. Finally, suggestions

are made for implementing and verifying viscous force effects in extended MHD codes.
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I. INTRODUCTION

Extended magnetohydrodynamic (MHD) models used in the CEMM project [1] seek to in-
clude all relevant physics needed for simulating fluid-type behavior of magnetically-confined
toroidal plasmas. The M3D [2] and NIMROD (3] code projects under the CEMM umbrella
have historically focused on using ideal and resistive MHD descriptions of axisymmetric equi-
librium toroidal plasmas. Recently, two-fluid effects (e.g., diamagnetic flows, gyroviscosity)
have been included. And explorations of plasma flows and their effects have begun.

In order to properly describe the evolution of flows, the anisotropic nature of the viscous
force in a magnetized plasma needs to be taken into account. In particular, the viscous forces
induced by collision-induced parallel stresses in the plasma need to be taken into account
because: 1) they are the largest viscous forces; 2) they collisionally relax the electron and ion
flows on their respective time scales; 3) in low collisionality plasmas they lead to important
effects in the parallel neoclassical Ohm’s law (trapped particle effects on the resistivity and
bootstrap current) and the poloidal plasma flow (relaxation to an ion-temperature-gradient-
determined value); and 4) it is important for numerical stability and convergence issues to
properly treat dissipative effects in the M3D and NIMROD codes.

This report is organized as follows. Section II describes the various components (par-
allel, cross and perpendicular) of stresses and in particular the collisional viscous stresses
in a magnetized plasma. Appendix A describes the collisional (Braginskii) parallel stresses
in plasmas containing, as is typical in tokamaks, electrons, hydrogenic ions and impurity
ions. The following section (III) presents various forms of parallel stresses and the resultant
viscous forces. Thereafter, Section IV proposes specific forms for viscous forces induced by
parallel stresses for inclusion in the M3D and NIMROD codes. Asymptotic “residual” par-
allel viscous force coefficients in high (Braginskii, Pfirsch-Schliiter), intermediate (plateau)
and low (banana) collisionality regimes, and smoothed multi-collisionality formulas for both
electrons and ions in plasmas with small admixtures of impurity ions are presented in Ap-
pendix B. The penultimate section suggests tests to verify the implementation of these
viscous forces in the M3D and NIMROD codes. Finally, Section VI summarizes the viscous
forces induced by parallel stresses in multi-collisionality regimes for tokamak plasmas that is
suggested for use in extended MHD codes. It also discusses some of the possible limitations

of the suggested form.



II. COLLISIONAL STRESSES IN A MAGNETIZED PLASMA

The fluid-based viscous force density on a small volume of a plasma species is =V - . The
fact that this force density is a local differential of the local viscous stress tensor 7 implies
that the physical processes that cause it are also local. This is unfortunately not true in low
collisionality toroidal plasmas where the collision length A = vy /v is usually many times the
toroidal circumference of the experimental device. Nonetheless, the following discussion and
analysis will seek to capture the most important low collisionality physics within this local
model of viscous forces — to facilitate inclusion of viscous force effects of parallel viscous
stresses in the M3D and NIMROD extended-MHD-based initial value codes.

The collisional Braginskii [4] viscous stresses are given by
™ =m +m\+m,, parallel, cross (gyroviscous) and perpendicular stresses. (1)

Here, the subscripts ||, A, L indicate parallel, cross and perpendicular directions relative to
the local magnetic field B(x). A strongly magnetized plasma species is defined as one that
has a small collision frequency v compared to the gyrofrequency w. and small gyroradius
0 = vr/w, compared to cross and perpendicular gradient scale lengths of plasma properties
and electromagnetic fields. For strongly magnetized toroidal plasmas of fusion interest a

small gyroradius expansion is usually appropriate:
d=p/a <1, smallgyroradius expansion. (2)

Here, a is a characteristic macroscopic plasma dimension, typically the plasma minor radius.
For arbitrary flow velocity magnitudes and properties, the characteristic scalings of the

parallel, cross and perpendicular stresses can be written for Ryg 2 A 2 a as
™)~ VAN’V |V, 7w\ ~voABXVV/B ~ oy, T~ v’V V ~ §? ), scalings. (3)

Thus, the parallel viscous stress 7 is usually dominant in small gyroradius, magnetized
toroidal plasmas. The remainder of this report will concentrate on it. [For plasma pertur-
bations extended long distances along field lines (i.e., | V| < 1/a) but radially localized to
a small fraction of the minor radius (i.e., |V | ~ k; > 1/a), the cross and perpendicular
stress effects can become larger than this scaling indicates by factors of k; a and (ka)?; for
such cases the cross (gyroviscous) force can exceed the parallel stress force — as is the case

for many perturbed diamagnetic flow effects on MHD-type instabilities.]
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The parallel viscous stresses for electrons and ions were originally written by Braginskii

[4] for each species in the form (here, z is the local coordinate along B)
av, 2
= -~ (V.V). 4
= (VV) ()
For an electron-ion plasma with a hydrogenic ion species (i.e., Z;=1), the collisional viscosity

coefficients for electrons and ions are [4] (1 = 1/v, A = vr/v and vy = /2T /m)

™ =—"o W, W.,.=2

ny = 0.96n,T; 7y = 0.48min; v; A3, 1S = 0.73n.T, 7. = 0.365 Mene V2. (5)

The parallel stresses can be written in general (for arbitrary collisionality in an inhomo-

geneous magnetized plasma) in the Chew-Goldberger-Low form as [5]

T = 7| (bb—1/3), b- ™) b= (2/3) 7, parallel stress tensor. (6)
Here, m(x,t) = py — p. is the pressure anisotropy, which is a scalar function of space and
time. Also, b=B /B is a unit vector along the local magnetic field B and | is the identity

tensor (dyad). In the Braginskii high collisionality regime m is given for each species by

T =—(3/2)n b-Wy -b,| collision-induced pressure anisotropy, (7)

in which the rate of strain in the plasma species induced by the flow velocity V is
Wy = VV +(VV)T —(2/3)1(V-V), rate of strain induced by V. (8)

The superscript T is the transpose of that tensor (dyad); thus, Wy is a symmetric tensor.
The Braginskii [4] closures for the parallel viscous stress 7| were developed for MHD-type
applications where the flow velocity V is assumed to be large compared to the heat flow
velocity V, = —2q/5nT and higher order flow-type moments (energy-weighted heat flow
etc.) — but still gyroradius small compared to thermal speeds: |V|/vr ~ 0 < 1. However,
in two-fluid treatments which include diamagnetic flows, the diamagnetic-type heat flows V,
are comparable to the diamagnetic flows Vi, = BXxVp,/ (nsquQ) and cannot be neglected.
Then, the rate of strain tensor is modified [6]: Wy — Wy + W,,, where the rate of strain

tensor for heat flows is
W, = (-2/5nT) [Va + (V)" - (2/3)1(V-q)]. (9)

Similarly, the stress tensor gets modified: w — my + m,, in which 7, represents parallel
heat stresses. Viscosity coefficients including these heat flow effects and allowing for impure

plasmas (i.e., for Zeg = >, n;Z%/n. > 1) are discussed in Appendix A.
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III. VISCOUS FORCE INDUCED BY COLLISIONAL PARALLEL STRESSES

Next, various geometric forms of the pressure anisotropy and the viscous force they induce
will be explored. Using various vector and tensor identities and the definition of the local
curvature of the magnetic field, k = (b-V)b = —bx(Vxb) with b = B/B, it can be

shown that

B-W,-B/2| = B-VV.B — (B?/3)(V-V)

= B(B-V)(B-V/B)+ [Bx(BxV)]-k — (B*/3) V-V

= |BV-VB+B-Vx(VxB)+ (2B¥3) V-V — (B-V)(V-B).| (10)

The form on the last line will be used below — because, as discussed below, its first term is
the only term that survives on longer than collision times scales, after the faster MHD-type
compressional Alfvén and sound wave relaxation processes come into quasi-equilibrium. The
representation of B - W, - B is similar with V — q.

In order of appearance in the last line of (10), contributions to B - Wy,- B have the fol-
lowing effects. The first, V-V B term indicates parallel strain induced by flow in directions
in which the magnitude of the magnetic field varies. Since the lowest order flows are within
a flux surface, this term mainly produces poloidal flow damping, at a rate proportional to
the collision frequency v (for each species). The second term represents MHD-type advec-
tion of the parallel component of the magnetic field, as is evident from its linearized form
B, -V x (VXBO) ~ By 8B|| /0t. Together with part of V-V it provides viscous damping of
“fast” compressional Alfvén waves, which to lowest order relax P + BOBH/ to- The third,
V-V term represents plasma compressibility. Its residual after the fast relaxation of com-
pressional Alfvén waves provides viscous damping of sound waves on the ion collision time
scale. Because there are no magnetic monopoles in the universe, the final, V- B term van-
ishes; however, this term could be kept in extended MHD codes to assist in “divergence
B cleaning” — i.e., for relaxing away via viscous damping any numerical errors that cause
V-B # 0. For simplicity the analogous effects due to heat flows V, = — (2q/5nT") will
be neglected on the MHD compressional Alfvén and sound wave time scales; however, heat
flow effects will be retained on the collision (poloidal flow damping) time scales.

The M3D and NIMROD extended MHD codes use semi-implicit numerical algorithms to

take time steps longer than MHD wave time scales while capturing the constraints imposed



by these processes. Thus, for analytic purposes, on collision time scales the last form of (10)
can be simplified by taking V-V =0 and V- B = 0. In addition, since on the collision time
scale perpendicular flows are Bx V¢/B? plus diamagnetic flows in approximately the form
V), = (1/B*)Bx V[, in which f = f(1,) is a scalar flux function, one has B -V X (V xB) =
B(B-Vf)(b-Vxb) ~ (kja) 8. As indicated, this term is small for typical plasma responses
that are highly extended along field lines and for low [ plasmas; thus, this contribution
will be neglected henceforth. With all these simplifications, on the collision time scale the
“residual” pressure anisotropy induced by the combination of flows and heat flows is (see

Appendix A for how the viscosity coefficients are determined for impure plasmas)

3
-5 (nOOV-VB — o1 qa -VB) , on collision or longer time scales. (11)

5nT

The viscous force density caused by the parallel stress tensor 7 defined in (6) is in general

F,=-V.ry=—7[k—B(B-VB)/B - (1/B>)B(B-V)r + (1/3) V.| (12)

And the parallel (B - ) component of this viscous force is
B-F,=-B:-V.7m=m (b-VB)—(2/3)(B-V) 7, parallel viscous force. (13)

The last term will be annihilated below by averaging this parallel force over a flux surface.

Up to now neither the magnetic field structure nor a coordinate system have been spec-
ified. However, they are needed to connect these results with axisymmetric neoclassical
transport theory [7, 8]. The axisymmetric equilibrium magnetic field By = B; + B, has

toroidal and poloidal components. It is written in terms of the poloidal magnetic flux 1,
Bo(¢p,0) = IV(+ V(XV, =Vi,xV]q,)0 —C], 1(¢,) = RB,. (14)

The radial, poloidal straight-field-line and toroidal axisymmetry coordinates will be taken
to be 1, 0,( for which the poloidal rotation of a field line per unit toroidal rotation is
df/d¢ =1/q(¢,) = Bo-VE/By-V (. The Jacobian for transforming from the laboratory (x)
to these (non-orthogonal) curvilinear coordinates is /g = 1/(V, -VOX V() = 1/B,- V0.
The flux surface average (FSA) of a scalar function f(x) on a ¢, flux surface is defined by

f027rdC foZTrf(X) dQ/Bo'VQ
o fOQWde/BO.Vg

(f(x)) =

, flux surface average of f(x). (15)

The FSA is an annihilator for parallel derivatives of scalar functions: (By-V f) = 0.
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On the collision and longer time scales the flow and heat flow are incompressible [7, §]:
V-V =0, V-q = 0. Since to first order in the small gyroradius expansion (§ < 1) the
flows and heat flows lie within flux surfaces, using the general relation for the divergence of

a vector in an axisymmetric system one can show for each plasma species that [§]

0= vV = (vove) 2 (

poloidal flow function. (16)

V.-V N V.-V
00

B, V0 Us(thp) = By V0’

Similarly, V. q = 0 yields Qy(¢,) = q-V0/B,-V0. Thus, to lowest order in ¢ the FSA of
(13) yields the residual parallel viscous force for each species (here, b =B, /Bo):

(Bo-Fr) = — (Bo-Vemr) = =3 ((b-VBy)*) [m00 Up + 101 (—2/50T) Qp].  (17)

IV. VISCOUS FORCES FOR EXTENDED MHD CODES

Extensions of the flux surface average (FSA) collisional parallel viscous force in (17) to
the low collisionality regimes of axisymmetric tokamak plasmas have been developed [8];
these “neoclassical” results are discussed and summarized in Appendix B. For the present
purposes it is convenient to specify the FSA of the residual parallel viscous force in terms
of a damping force on the poloidal flow Uy to an “intrinsic” or “offset” flow velocity Uy in

the general form (for each plasma species, subscript s)

(Bo+Fyr) = — (Bo - Vemy) = —mgns ps (B3)(Usg — Usy),| FSA || viscous force, (18)

]<77Z}p) deO
® g <B(2)> diby 7

Formulas for the poloidal viscous damping frequency ps and offset poloidal flow coefficient

U=k

offset poloidal flow. (19)

ks, which depend on the species and collisionality regime, are specified in Appendix B.

In general, the offset poloidal flow UY, which is proportional to the poloidal heat flow,
does not depend solely on the temperature gradient of the species being considered. Rather,
in tokamak plasmas with small admixtures of impurities in addition to the dominant hyro-
genic species, it depends on impurity density and temperature gradients, and the impurity
collisionality regime [9]. In transport codes the offset poloidal flow UY, is often evaluated
using the NCLASS code [10]. However, as discussed in [9], if the impurities are in the inter-
mediate (plateau) or high (Braginskii, Pfirsch-Schliiter) collisionality regime, U depends

predominantly on the ion temperature gradient, as indicated in (18). Thus, as discussed
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further in Appendix B, it will be assumed that the form of (19) provides a sufficient repre-
sentation of the effects of small admixtures of impurities in extended MHD codes.

The general form for the viscous force induced by pressure anisotropy is given in (12). The
key question is: what should be used for the pressure anisotropy 7 = p; — p.? The answer
for MHD-type responses is the combination of 7 given by (7) with the B - Wy, - B/2 given by
(10) since on the fast compressional Alfvén and sound wave relaxation time scales the heat
flows V, can be neglected. After dissipation of MHD-type compressional Alfvén and sound
waves with the Braginskii parallel viscous damping coefficient 7gg, the residual contribution
to (10) on collision and longer time scales is the first term, B V-V B, as indicated in (11).
For that term the general multi-collisionality regime result for the flux surface average of
the residual parallel viscous force can be written in the form given in (18), which is a
generalization of the corresponding Braginskii form given in (17). To capture all these
properties within a single viscous force it is proposed to leave the viscous force effects on
compressional Alfvén and sound waves unchanged with the Braginskii 7go coefficient but to
modify the BV-V B term in (10) and (11) so the flux surface average it produces is given
by (18). Thus, the proposed pressure anisotropy for each species is (here b =B, /Bo)

b-VB
T = —mnu (B§>AL02 (Us = Uy)
((b-VBy)?) proposed form.  (20)
B.-Vx(VxB) 2 B-V)(V-B
—37700( B(z )+§VOV_(23#)7

Thus, the suggested prescription for introducing viscous force effects due to parallel stresses
into the M3D and NIMROD extended MHD codes is to implement the viscous force given by
(12) with the pressure anisotropy 7 given in (20) using p, from (B8), (B12), (B14) and £,
from (B11), (B13), (B15) in Appendix B. Formulas for the needed Braginskii-type collisional
viscosity coefficients 7409 for electrons, ions in impure plasmas are given in (All), (A17).
Various heuristic viscous forces have been implemented and tested in reduced MHD codes
[12-14]. Heuristic forms previously tested in the NIMROD code are discussed in [15]. The
most successful heuristic form used in NIMROD is [15] F; = —mnu(B?)(V - eg) ep/(B - €p)?,
in which ey = \/gV({(xV, = B,/(B¢-V0) is the covariant base vector. This form is
obviously simpler than the form proposed in (18)—(20). However, the more general viscous
force proposed here has the advantage that it captures the usual Braginskii viscous force as

well as the residual multi-collisionality effects and offset flows UY, on long time scales.
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V. VERIFICATION TESTS FOR VISCOUS FORCE EFFECTS

In implementing this suggested procedure for including the viscous force effects due to
multi-collisionality parallel stresses in extended MHD codes, three categories of verification
tests are suggested: fast MHD-type processes, relaxation of flows, and transport-time-scale
effects — as discussed in the succeeding paragraphs.

Fast MHD-type processes: Generally speaking, viscous force effects should be negligible
and have no significant effects on ideal-MHD-type plasma responses. Thus, the first verifi-
cation test is to make sure adding the viscous force effects “do no harm” to these responses.

Relazation of flows: The electron viscous force effects add to the magnetic field evolution
equation a fourth order derivative, diffusive- (parabolic-) type term (via V, = V; — J/n.e
with poJ = V xB), which is sometimes called a “hyper-resistivity” effect. While this is
useful in dissipating magnetic field structures that are highly localized radially, it should
not affect other physical processes much. Similarly, the ion viscous force adds a diffusive
effect to the momentum equation, primarily to its parallel component. These effects should
become significant on the electron and ion collision time scales, respectively; they should
dissipate compressional Alfvén and sound waves on the ion collision time scale. On time
scales longer than the respective collisional time scales the electron and ion flows should relax
to being: incompressible, of first order in the gyroradius, and flowing within an equilibrium
or average flux surface. Specifically, they should be described by Egs. (18) to (47) in [11].
Suggested verification tests would be to check that, on time scales longer than the respective
collision times: 1) electron and ion flows are incompressible to O{§?} as indicated in (16)
above and Eq. (22) in [11]; 2) the poloidal flow function Uy = V-V 8/B- V6 is approximately
constant on flux surfaces (to order O{d}); 3) the current density J is as given in Eqs. (26)
and (29) in [11]; 4) the FSA neoclassical Ohm’s law given in Eq. (39) in [11] is obtained with
the parallel resistivity given by (40) and bootstrap current by (41); 5) the poloidal ion flow
is as indicated in Eqgs. (44) and (45) in [11]; 6) the radial flows V-V, for both electrons
and ions are order d smaller than the corresponding poloidal and toroidal flows within flux
surfaces; and 7) for an axisymmetric equilibrium By field and a pressure anisotropy 7 that
is independent of the toroidal angle, the viscous force does not cause a toroidal torque on
either plasma species (i.e., (R*V( -V - ) = 0). Ultimate verification and validation of the

proposed form for 7 given by (20) and the viscous force it causes will be through detailed



comparisons for a wide range of applications with results from kinetic-based approaches,
such as those being developed by Held et al. [16].

Transport-time-scale effects: The main residual viscous force effects induced by collision-
induced parallel viscous stresses on the long transport time scale are (analytically) to enforce
ambipolarity through first order in the gyroradius (via Eqgs. (42)—(45) of [11]) and to cause
the banana-plateau (ambipolar) neoclassical radial particle flux, as indicated in Eq. (89) in
[11]. In addition, their inclusion facilitates the analytic derivation of a toroidal flow (rotation)
equation on the transport time scale, Eq. (119) of [11]. Suggested verification tests would
be to: 1) obtain the banana-plateau radial particle flux indicated in Eq. (89) of [11] and
check that it is ambipolar; and 2) show that the toroidal flow obeys the toroidal rotation

evolution equation given by Eq. (119) in [11], after irrelevant terms there are eliminated.

VI. DISCUSSION AND SUMMARY

As indicated by the boxed equations above and the paragraph after (20), a new pro-
cedure has been proposed for including viscous force effects caused by collision-induced
parallel viscous stresses in high (Braginskii [4], Pfirsch-Schliiter), intermediate (plateau)
and low (banana) collisionality regimes. The proposed procedure uses standard Braginskii
collisional viscous forces with coefficients 7y for relaxing MHD-type responses, but a new
multi-collisionality regime residual viscous force on collision time scales. Specifically, the
new procedure uses the normal CGL pressure tensor form in (6) and viscous force definition
in (12), but suggests a new form for the pressure anisotropy given by (20). The multi-
collisionality regime poloidal flow viscous damping frequency ps is given in (B8), (B12),
(B14) and the constant k, for the intrinsic poloidal flow UY defined in (19) is given by
(B11), (B13), (B15). The relevant collisional (Braginskii) regime viscosity coefficients 700
for electrons, ions in impure plasmas, as is typical in tokamaks, are defined in (A11), (A17).

Some issues and limitations regarding use of this procedure to represent viscous force
effects due to collisional parallel viscous stresses in various collisionality regimes are: 1) Is
the form of the viscous force given by the combination of (12) and (20) really the best or
most appropriate form? 2) Are long scale (> mRyq) parallel variations in flow components
appropriately and adequately relaxed with the Braginskii ngy viscosity coefficients even in

low collisionality regimes where “collisionless” closures [16, 17] become relevant? 3) While
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the exponential temporal decay of poloidal flows resulting from (18) is not precisely correct
in low collisionality regimes [18], is this residual viscous force sufficient, except perhaps
for applications where the poloidal flow dynamics is critical, since it produces the correct
equilibrium flows? 4) Are the approximations that lead to the “offset” poloidal flows UY,
sufficiently accurate for extended MHD modeling in the M3D and NIMROD codes? and 5)
While the poloidal variation of the viscous force in the banana collisionality regime [19] is not
correct, is this residual viscous force sufficient, except perhaps for applications that depend
critically on the poloidal variation of viscous force effects, since its flux-surface average is
correct?

The fate of this proposal in extended MHD codes will depend on the practicality of its
implementation and its usefulness in capturing the most important viscous force effects in

low collisionality toroidal plasmas in the M3D and NIMROD codes.
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Appendix A: Collisonal (Braginskii-type) Viscosities

The Braginskii [4] closures for the parallel viscous stress 7 were developed for collisional
plasmas (i.e., [A\VV]| <« 1) and MHD-type applications where the flow velocity V is of
order the EXB flow velocity and large compared to the diamagnetic flows. In particular,
V is assumed to be large compared to the heat flow velocity V, = (—2q/5nT") and higher
order flow-type moments (energy-weighted heat flow etc.) — but still gyroradius small
compared to thermal speeds: |V|/vr ~ § < 1. However, as noted at the end of Section II,
since two-fluid treatments include diamagnetic flows, the diamagnetic-type heat flow V, is

comparable to the diamagnetic flow V, and cannot be neglected. Then, the rate of strain
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tensor is modified: Wy — Wy + W, in which the rate of strain tensor for heat flows is
given in (9). Similarly, the stress tensor gets modified: # — wo+ 71+ - =7y + 7, + - -
Here, the subscript indicates the order j of the energy weighting Laguerre polynomial in the

relevant moments of the distribution function (v =v —V):

;= / &' m V'V — (v2/3) 1] L3 (m?)2T) f(x, v, 1), (A1)

J

in which L?/Z(x) are Laguerre polynomials: LS/Q =1, Li’/Q =T7/2—x,---.

Taking the [d%' mb-[v'v/ — (v?/3)1] -BL?/2(mv’2/2T) moments with j = 0,1 of a
Chapman-Enskog form of the collisional equilibrium (9/0t < v,) plasma kinetic equation
and neglecting higher order (in a collisional regime) b- (m-VV)- b viscous-dissipation-type

terms yields a matrix equation for each plasma species:

o
lop

W 2/3) 7,
no T, | o (2/3)maon | (A2)
b-W:.b D Tss (2/3) may

<

_Q®»

Here, 7, is a reference self-collision frequency for a plasma species s that is defined by

1 4 4 nggtn A
— = 74 1 reference collision frequency. (A3)

Tss 3T {4meg}2mg vl

The matrix G is a 2 x 2 matrix of Coulomb collisional “drag” coefficients on the stresses
that result from the parallel stress moments of the collision operator. The parallel viscous
stresses 7y and 7, will be obtained by multiplying this equation by the inverse G;! of
the matrix G, for each species s. [If higher order energy moments are included (i.e., j > 2),
they yield (j+1) x (j+1) matrices and j+1 equations; however, after inverting the larger G
matrices the results obtained below change less than the 1/In A ~ 6 % intrinsic accuracy of
the Fokker-Planck Coulomb collision operator and hence are not warranted.)

The collisional matrix and its inverse can be written in general as [8, 20|

177 205 3Z 3
Ttes (B tas)

1 3 1 (1 8 -2+ 3 Z4+
G=2z| 2 |+—= o 24 2/ (A4)
3 17 V2 | 3 2 272 + 301 Z/48V/2 + 89/48

Here, the first matrix in G, represents collisions of a species s with a species s’ of charge Z

that has a much larger mass (my >> m,) and the second matrix represents self-collisions
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within the s species. Dotting the inverse G;! with (A2) yields the collisional pressure

anisotropy induced by the flow and heat flow rates of strain within the s species of
T = —(3/2) [mio b+ Wi - b+ 15, b W; - b (A5)

Here, the viscosity coefficient for each species s are

17 Z/4 + 205/48y/2
Moo = §Gs_olo nsls Tes = § 7Z/4+ 205/ Sv2 Nl Tgs, (AG)
6 6 222 + 301 Z/48v/2 + 89/48
5 5 3Z/243/4V2
7781 = = Gs_Oll nSTS Tss = — = / + / \/_ nSTS Tss- (A7)
6 6 272 + 301 Z/48v/2 + 89/48

For an electron-ion plasma with a hydrogenic ion species (i.e., Z =1), v, = 1/7.. and the
numerical coefficient in 71§, is 0.73, in agreement with the Braginskii coefficient n§ given in
(5). For only one species of ions Z — 0 in (A6), 7; = 7; = 1/(v/21;) and the numerical
coefficient in n{, from (A6) is (5/6)(205/89v/2)(1/+/2) = 0.96, in agreement with 7 in (5).

Typical tokamak plasmas have small admixtures of impurity (non-hydrogenic) ions. For
collisions of electrons with hydrogenic ions (subscript ¢, Z; =1) and various types of impurity
ions (subscript I, charge Z;), the effective ion charge is

2
_ ni—i—ZImZI
_—ne

Lot ion charge for electron collisions in an impure plasma.  (AS)

The electron collision frequency and length are defined for an impure plasma by

A2 (X niZE) et In A 5x107 M n (m™3) Zeg (In A (A9)
Ve = ~ ,
{4meo)2 3mi T3 [Te(eV)}3/2 17
Ure 16_ [Te(eV]?
= — ~ 12x10° —F=~. Al
/\6 Ve <10 Zeff Ne (m—S) ( O)

For an impure plasma the electron viscosity coeflicients obtained from (A6) and (A7) are

5 17Z2%/4+ 205 Zeg /482

[S)

— m
12 2 Z2; 4 301 Zog /482 + 89/48

5 32%)2+ 3 Zeg /42
ny, = —— oir/2 + n/4v2 MeMNe V2. (A12)
12 2 Z2; + 301 Zog /48/2 + 89/48

e Ve, (A11)

€ _
Moo =

With only hydrogenic ions (Zeg — 1), 1§, reduces to the Braginskii 7§ in (5).
For collisions of hydrogenic ions (subscript i, Z; =1) with various heavier impurity ions

(subscript I, charge Z;) the effective ion charge is

7 = E:I?/LIZ[2

ion charge for hydrogenic ion collisions in an impure plasma. (A13)
n;
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Note that the effective ion charge for electron collisions can be written in terms of this
effective charge for hydrogenic ions via Zeg = (n;/ne)(1 + Z,) or Z, = [(ne/n;) Zeg — 1].
The ion collision frequency and length can be defined for an impure plasma in terms of the

conventional deuterium (mass mp) ion collision frequency [1/7; = viv/2/(1 +V2Z,)]:

_ VAl VIS mZDe A 5810 () (14 vOZ) (AN |
i {47T60}23mg/27—;3/2 - (mi/mD)1/2 [Ti(eV)Pﬂ 17 )
i T 2
A=~ 17%10' [Zi(eV] "
Vi (14 v22.) ni(m™?)

Neglecting the small variations in the In A coefficients, the ion collision frequency in an

impure plasma can be written in terms of the electron collision frequency in (A9):

4 12 p\ 3/2 57
Vi = i (%> (—e) Lye ~ 1072 y,. (A16)
ne \ M; T V2 Zogt

For an impure plasma the ion viscosity coefficients obtained from (A6) and (A7) are

. 5(1+22,) 17 Z,/4 4 205/48+/2

oo 122 272+ 301 Z,/48V/2 + 89/48 (A17)
: 14+22, Z./2+3/4\2
12v2 272 +3017,/48v/2 + 89/48

With only hydrogenic ions (Z, — 0), 1, reduces to the Braginskii nj in (5).

Appendix B: Viscosity Coefficients For Multi-Collisionality Regimes

There is one fundamental approximation used in obtaining the Braginskii viscous stresses
that is not appropriate for extended MHD descriptions of tokamak plasmas. Namely, the
collision length is assumed to be shorter than parallel inhomogeneity scale lengths of the
flow velocity V (i.e., |A V| V| < |V]). It is proposed here that this shortcoming be rectified
by incorporating neoclassical-based closures for collisional effects on the residual parallel
viscous force [8]. The lowest (banana) collisionality regime will be discussed first; next,
scalings of low, intermediate and high collisionality regimes will be discussed. Finally, multi-
collisionality forms for the flux surface average (FSA) of the residual parallel viscous force
will be developed.

The low collisionality “banana” regime [7, 8] is defined to be that where trapped particles

circumnavigate their banana drifts orbits without suffering enough collisions to scatter them
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out of the trapped particle region of velocity space. In a fluid description the consequences of
this physics are captured [8] through the residual parallel viscous force induced by collisions
of untrapped (circulating) particles that carry the flow with “immobile” trapped particles.
In the banana collisionality regime the residual parallel viscous force can be written [8] for

each species in the form of the corresponding FSA of the Braginskii closure relation in (17):
(Bo+Fr) = — (Bo- Vo)) = —mn (Bg) [ oo Uy — pron (2/5nT) Qo . (B1)

The poloidal flow damping frequencies on the flows and heat flows can be written for electrons

colliding with ions of charge Z as [see Eqgs. (4.18), (4.20), (4.21) and (4.61)—(4.63) in [8]]:

Z +0.533
o 2% (1.46+/€) v, (B2)
Teefc Z

e _ ERN I fi _ 1.5Z40.625 -\
wo, = [(ZJF\/?) 2[Z+\/§ In(1+v/2)] i 7 (1.461/¢ ) v.. (B3)

As for the collisional viscosity coefficients in (A6) and (A7), the ion banana regime poloidal

oo = [Z+\/§ - ln(1+\/§)}

flow damping coefficients are obtained by setting Z — 0, 7. — 7 in the first forms. In

(B2) and (B3) the flow-weighted fraction of circulating particles f. is defined by [8, 9]

f.= 3<B2>/1/Bmax Ad) 1 —1.46 /e + 0.46€\/¢,| circulating particle fractio
L=< ~ 1 —1.46 e+ 0.46 €\/e,| circulating particle fraction.
0 (VI 2B0)

(B4)
The complementary fraction of trapped particles is f; =1 — f. ~ 1.461/e — 0.46 ¢1/c. In the
approximate forms at the end of all these formulas the variation of the magnetic field strength
on a magnetic flux surface has been approximated by By ~ ByRy/R ~ By(l — ecosf) in

which | € = (Bmax — Bmin)/(Bmax+ Bmin) ~ 7/ Ry < 1.

If the residual parallel viscous force in (B1) is dominant in the FSA parallel momentum
equation of a plasma species, it forces the poloidal flow to an “offset” value determined by
the poloidal heat flow: U§ = (uo1/p00) (2/5nT) Q. In the banana collisionality regime, to
lowest order in /e, collisions force the parallel ion heat flow to zero and poloidal heat flow
is induced by the diamagnetic ion heat flow; then, it is given by [7, 8, 11] (2/5n,T;) Qi =~
[1/(qi(B2))] dT}o/dvp,. Thus, the poloidal ion offset flow velocity is (for /e < 1)

o o i 2 0625 I dTy -1 1 dT
07 oo 5Ty 7 T 0.533¢(B2) dip, B, ZieBy dr’

This result indicates a diamagnetic-type offset poloidal ion flow speed of V;, ~ B,UY ~

banana regime.  (B5)

[1.17/(Z;eBy)](dTy0/dr) driven by the ion radial temperature gradient, a familiar asymptotic

limit in neoclassical transport theory [7, §].
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Collisionality regimes in tokamak plasmas are defined by the ratio of the effective collision

frequency of trapped particles veg ~ v/ f2 ~ /e to their bounce frequency wy ~ /€ vr/Rog:

Veff v Roq . . . .
Uy = — = = ., collisionality regime parameter. B6
Wh 63/2(UT/ROQ) 32\ yree P (B6)

The three relevant collisionality regimes (for each species) are

Ve K 1, low (banana) collisionality regime,
1 < v, <e3? intermediate (plateau) collisionality regime, (B7)
3?2 <, high (Braginskii, Pfirsch-Schliiter) collisionality regime.

The FSA residual parallel viscous force in the banana regime was defined in (B1). The
Pfirsch-Schliiter regime is [7, 8] the high collisionality Braginskii regime whose FSA parallel
viscous force, which is of the same form as (B1), was given in (17). The plateau regime is
an intermediate collisionality regime where typical untrapped particles are collisionless, but
trapped and low parallel velocity particles drift radially off flux surfaces, which causes radial
plasma transport and parallel viscous forces. The FSA of the residual parallel viscous force
in the plateau collisionality regime can also be written in the same form as (B1) with viscous
damping coefficients that can be obtained from (4.65) in [8]. Their poloidal flow damping
frequencies scale as u ~ e2vr/Ryq, i.e., independent of collision frequency.

For extended MHD simulations it is convenient to specify the FSA of the residual parallel
viscous force in terms of the damping of the poloidal flow to an “offset” flow velocity Uy in
the form (for each plasma species) indicated in (18) and (19). Multi-collisionality forms of
the parallel viscosity coefficients ., u; for electrons, ions have been developed [7-9]. They
can be written in the form [7] pu ~ /ev/[(1+ v 4 v,) (14 €/21,)], with various order unity
numerical factors in front of each of the factors. Here, the v/? factor in the denominator
arises from [7] collisional boundary layer effects in the vicinity of the velocity-space boundary
between trapped and untrapped (circulating) particles.

In general the offset poloidal ion flow U} in (19) and (B5) depends on impurity density
and temperature gradients, and the collisionality regimes of impurities as well as that of the
dominant ion species [9]. In transport codes the constant k; is often evaluated using the
NCLASS code [10]. However, since impurity collision frequencies are usually much larger
than ion collision frequencies, impurities have higher v, values (v.;/vs ~ Z? > 1); hence,

they are often in the plateau or even Pfirsch-Schliiter collisionality regimes. There, it can
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be shown [9] that to lowest order the offset poloidal ion flow U}, is proportional to the ion
temperature gradient as indicated in (19) with the coefficient k; determined mainly by the
collisionality regime of the hydrogenic ions. Very deep in the ion banana collisionality regime
(i.e., V4 < 1) the impurity ion density and temperature gradient effects should be taken
into account by using NCLASS [10] to obtain the offset flows UY. However, this very low
hydrogenic ion collisionality regime is only barely reached in most present tokamak plasmas
and when impurity flows become important one should really be solving three-fluid equations
that include impurity density, momentum and energy equations. Thus, for the purpose of
extended MHD codes it will be assumed that the offset poloidal flows U2 can be represented
in terms of the respective temperature gradients as indicated in (19).

In this work descriptions for the residual parallel viscous forces are desired that both
encompass all three collisionality regimes and asymptotically approach the low (banana)
collisionality regime results for v, < 1 and the high (Braginskii) collisionality regime when
v, > €32 Also, small admixtures of impurities should be allowed for since tokamak
plasmas often have Z.g ~ 2-3. Such descriptions have been developed by Kim et al. [9] from
the general formulas presented in [8]. Using those results (but correcting the coefficient of
the Pfirsch-Schliiter term in the denominator from 1/6 to 2/3 to obtain the correct high
collisionality limit) and adding collisional boundary layer effects [7], the poloidal damping

frequency of each species s in (18) is proposed to be, in the spirit of a Padé approximation,

s (ft/fC) Kb /Tss
fs = i = = T

1+ 224 2,920, K2, /K{;’O} [1 4 2RE /Bt KESY|

(B8)

Here, K%, K% and K%° quantities are dimensionless viscosity coefficients in the banana,
plateau and Pfirsch-Schliiter collisionality regimes, respectively; they are given in Table 1.
The collisionality parameter v, is solely a function of the poloidal flux v, and is specified

for a general axisymmetric magnetic field geometry by [9] (for each species)

. Wis B2 Vs .. .
Vis = Ii/ 1 5 i A< 0) ~ = ,| general collisionality parameter.
1.46 v3,7ss 2((b -V By)2) e32vr,/ Rog
- . | .. (BY)
Also, the characteristic transit frequency for each species of untrapped particles is
wis = vrs/Roq, transit frequency. (B10)

As indicated in (B9), in a large aspect ratio tokamak where /e < 1 one obtains f;/f. ~
1.461/€, (B2) ~ B2 and ((b-V B,)?) ~ €2B2/(2R%¢?) and (BY) reduces to the usual (B6).
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TABLE I. ASYMPTOTIC DIMENSIONLESS VISCOSITY COMPONENTS.
In impure plasmas Z — Zg for electrons, Z — Z, for ions and Z — 1/Z, for impurities.

In the rightmost column D = (6/5)(222 + 301/48v/2 + 89/48) ~ 2.4022 + 5.327 + 2.225.

collisionality
regime: banana (b) plateau (p) Pfirsch-Schliiter (PS)

Koo  Z+vV2-In(1+V?2) Nz (17Z/4 + 205/48+/2) /D
~ 7 4 0.533 ~1.77 ~ (4.25Z +3.02)/D

Ko Z+1/V2 3w (7/2)(23Z/4 + 241/48V/2)/ D
~ 7 4 0.707 ~ 5.32 ~ (20.137 + 12.43)/D

Ki 27 4+ 9/4v/2 12y/7 (49/4)(33Z/4 + 325/48+/2)/ D
~ 27 +1.591 ~ 21.27 ~ (101.06Z + 58.65)/D

In the asymptotic banana regime (v,, — 0) the j, in (B8) reduces to (f;/ f.) K, /7ss which
is the same result as was given in (B2). Similarly, in the asymptotic Pfirsch-Schliiter regime
(Ves > €32 Or wyyTes > 1) the gy in (BY) reduces to (3Tu7ss/ms)KES (b -V By)2)/(B2),
which in turn yields 378, ((b -V By)?)/(msng(B2)) in which the 78, coefficients are the gen-
eralized Braginskii coefficients given in (A6).

A multi-collisionality formula for the coefficient % in the intrinsic poloidal flow Uy can be

constructed similarly for each species from Egs. (C.19)—(C.21) and Table 1 of [9]:

k.= Hou = 5 _ Koy — 5 _ f(gl 1+ vil* 42,92 V*SK(Z)JO/K(IJ)O 1+ QKSO/(3WtsTSSK£)S)
R Kow 2 K} 1+ ViS/Q—i— 2.92 V*S[A(é’l/f(é’l 1+2K%,/(3 wtsTssK(ﬁs)

(B11)
To lowest order in /e, for hydrogenic ions and no impurities (Zeg — 1), k; is 1.17, —0.5
and —1.6 in the banana, plateau and Pfirsch-Schliiter collisionality regimes. Similarly, for
electrons, hydrogenic ions and no impurities, k. is 1.39, —0.5 and —2.0 in these regimes.
These coefficients for the poloidal flow damping frequency p and coefficient k£ in the
offset poloidal flow yield numerically correct FSA parallel viscous forces (B1) and (17) in
the asymptotic limits of the banana and Pfirsch-Schliiter collisionality regimes. However,
they overestimate them slightly in intermediate collisionality regimes — the p value can be

a factor of order 1.4 too large in the plateau collisionality regime (see Fig. 1 in [8]).
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In the large aspect ratio limit /e < 1 the viscous damping frequency p and offset flow
coefficient k can be simplified. Namely, using the definition in (B8) and the specifications

of the coeflicients in Table I one obtains for electrons

146\/_(1+0533>

~
1/2 0.533 2422 +5.32Z05+2.225
1+ 2 4 16501+ P2, | |1+ 1182 ST |

Zoi=2.5 1.77\/€e v,
(14 v +20) (14 1.066¥20,,)

(B12)

The corresponding electron coefficient for the offset poloidal flow is

2,472 +5.32 7.5 +2.225
Zesi +0.707 1+ Vl/Q +1.65(1 + QZLfW*@ 1+1.18 Ze:(4 252*f3 02) Ve

5
/2 0.707 2472 45.32Z.5+2.225
2 Zeg +0.533 14 1,07 +0.55(1 + v Wie 1+ 3.54 S 132C34f:12 o €32y,

Zuz25 |5 o 1+ 24920, 141.06620,, (B13)
2 14 u 240700, 1069620,

The last approximate forms are appropriate for most tokamak plasmas where Z.g is often
in the range of 2-3. The electron collision frequency v, is given in (A9) and the electron
collisionality parameter v, is defined in (B6) with v — v, = Zeg/Tee, V17 — Vre = \/m
and A — A\, = vpe/V,, which is given in (A10). The boundary layer term does not have a
Zog factor in it because the full v, influences pitch-angle scattering in velocity space.

The corresponding ion poloidal viscous damping frequency is given by (for \/e < 1)

146\/_Z*+0533
= [

Z.+0.707
1 +1/1/2 1 1.652:40533,, } [1 1118 2.47245.327,+2.225 32,

Z.+0.707 (Z.+0.707)(4.25Z,+3.02)

z.=3 1.32/c v,
(14 v 2 +1.490) (1+0.806¥20,,)

12

(B14)

The corresponding ion coefficient for the offset poloidal flow is

1/2 2.472+45.327Z,+2.225
>~ § Z,+0.707 1+ v, 4 + 1.65 g*ig ?Siv 1+ 1'18(Z*+0.707)(4.25Z*+3.02) —

2.4Z%+5.32Z*+2.225
2 2,+0533 L+ v + 0550, 14+ 354 o nz e m € Vi

3|5 s 1 V2 41570, 14 0.80 €320, (B15)
2 T 14U P 40550, 105260,

12

The last approximate forms are appropriate for most tokamak plasmas where Z, is often in
the range of 2-4. The ion collision frequency v; is given in (A14) and the ion collisionality
parameter v,; is defined in (B6) with v — v; = (Z, + 1/v/2) /7, vr — vp; = \/2T;/m; and
A — \; = v /v, which is given in (A15).
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