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Edge Localized Modes (ELMs) near the boundary of a high temperature, magnetically confined
toroidal plasma represent a new type of nonlinear MHD plasma instability that grows through a
coherent plasma interaction with part of a chaotic magnetic field. Under perturbation, the freely
moving magnetic boundary surface with an X-point splits into two different limiting asymptotic
surfaces (manifolds), similar to the behavior of a hyperbolic saddle point in Hamiltonian dynam-
ics. Numerical simulation using the extended MHD code M3D shows that field-aligned plasma
instabilities, such as ballooning modes, can couple to the “unstable” manifold that forms helical,
field-following lobes around the original surface. Large Type I ELMs proceed in stages. Initially, a
rapidly growing ballooning outburst involves the entire outboard side. Large plasma fingers grow
well off the midplane, while low density regions penetrate deeply into the plasma. The magnetic field
becomes superficially stochastic. A secondary inboard edge instability causes inboard plasma loss.
The plasma gradually relaxes back towards axisymmetry, with diminishing cycles of edge instability.
Poloidal rotation of the interior and edge plasma may be driven. The magnetic tangle constrains the
early nonlinear ballooning, but may encourage the later inward penetration. Equilibrium toroidal
rotation and two-fluid diamagnetic drifts have relatively small effects on a strong MHD instability.
Intrinsic magnetic stochasticity may help explain the wide range of experimentally observed ELMs
and ELM-free behavior in fusion plasmas, as well as properties of the H-mode and plasma edge.

I. INTRODUCTION

Most magnetically confined toroidal plasmas for fu-
sion research operate with a bounding magnetic surface
whose cross section has one or two “X”-points, at the
top or bottom of the plasma, where the magnetic field
lines become exactly toroidal. This shape allows good
plasma confinement with a steep pressure gradient just
inside the plasma edge, the so-called H-mode[1], although
the reason for the improved edge confinement is incom-
pletely understood. High plasma pressure at the top of
the gradient is desirable for high fusion reactivity, but it
is self-limited by plasma instabilities driven by the pres-
sure gradient (ballooning modes [2]) or by the large local
plasma current caused by the pressure gradient (peel-
ing modes [3, 4]). X-points allow the plasma boundary
to attain a more triangular shape, which provides some
stabilization against these modes. They were originally
conceived as a means to control the plasma outflux and
impurity influx, channeling the outflux along the field
lines to special “divertor” regions at the wall. In prac-
tice, the plasma loss is less controllable. In many cases
periodic Edge Localized Modes[5, 6] (ELMs) expel large
amounts of plasma particles and energy to the surround-
ing walls, on fast MHD time scales. Many features of
large ELMs are similar across experiments, but others
differ[7–9]. In fusion burning plasmas, the power losses
can be large enough to be dangerous to the material sur-
faces. Controlling or eliminating ELMs constitutes one of
the most important challenges to next generation fusion
burning experiments, such as ITER[10].

A toroidal magnetic field satisfies ∇·B = 0 and can be

described as a Hamiltonian system with two degrees of
freedom[11]. For axisymmetric nested magnetic surfaces
without X-points, Hamiltonian theory[12, 13] predicts
that much of the original nested structure is retained
under small perturbations. A few isolated magnetic is-
land chains and mixed field regions appear, bounded
by Kolmogorov-Arnold-Moser[14] (KAM) surfaces that
correspond to original surfaces with irrational field line
winding numbers. As the perturbation grows, surviv-
ing surfaces are progressively lost, in a predictable way.
Much of the theory of toroidal plasmas has been based
on this picture.

The plasma boundary is less constrained than interior
surfaces. A magnetic X-point on the plasma boundary
corresponds to a hyperbolic saddle point in a Hamilto-
nian system[15, 16]. Under small perturbations, the mag-
netic surface near the X-point splits into two different,
multiply-intersecting asymptotic limits, as in the Hamil-
tonian system[13, 17], whose behavior was first noted
by Poincare[18]. The X-point itself is well preserved.
The two limiting surfaces (actually, manifolds) can be
defined[12, 13] as the limiting locations of the field lines
as they emanate from or approach the X-point, traced in-
finitely in each direction. Field lines defining the stable
manifold are directed toward the X-point, while on its
other side the field lines of the unstable manifold move
away from the X-point (cf. Fig. 8).

In the unperturbed state, the two manifolds coincide
on a flux surface. Once a perturbation splits the field and
the two manifolds develop a single transverse intersection
point, they no longer coincide almost anywhere. Each
side of the X-point effectively has two field-line limiting
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surfaces, one forming loops around the original surface
(“unstable”) and the other lying near the original (“sta-
ble”). Although multiple X-points may exist, much of
the ELM dynamics can be captured by considering the
two pairs of perturbed manifolds that exist locally on
each side of a single X-point.

The perturbed stable and unstable manifolds cannot
cross themselves, but can cross each other. The interme-
diate field lines also intersect. Each secondary X-point
formed by intersection also undergoes asymptotic surface
splitting as the perturbation grows. The resulting field
forms a magnetic tangle with a complex, chaotic struc-
ture. (The terms chaotic and stochastic will be used in-
terchangeably for the ELM field, since it deviates from
an ideal Hamiltonian tangle.) If the far ends of the sta-
ble and unstable manifolds connect to a single X-point,
the tangle is called homoclinic or, if to different X-points,
heteroclinic.

The unconfined field lines outside the plasma do not
form closed surfaces, but typically wind a few times
toroidally between their endpoints on the surrounding
walls. In the Hamiltonian picture, such trajectories are
classified as unstable and cannot be described by the field
splitting arguments that apply to closed surfaces. The
unstable perturbed manifold of the boundary projects be-
yond the original plasma boundary (the last closed flux
surface or LCFS), but does not readily connect to the
exterior, unconfined field lines.

Experimental measurements on tokamaks with small,
deliberately applied nonaxisymmetric fields (resonant
magnetic perturbations or RMPs[19]) show[20, 21] mag-
netic signatures in the divertor that qualitatively match
the field structure predicted for a homoclinic tangle.
ELM divertor traces[22–25] are also compatible with a
homoclinic tangle. Both show multiple spiralling non-
axisymmetric stripes of plasma heating on the diver-
tor surfaces. The comparisons so far have used only
the vacuum magnetic fields, which could be measured
directly. The plasma response should change the field
and the tangle in important ways. For the RMP, evi-
dence includes experimental comparisons[20], predictions
from MHD simulations[26, 27] and suggestions by par-
ticle simulations with the neoclassical code XGC0[28].
Theoretical[29] and experimental studies of stellarators
and other helical plasmas also find that the plasma re-
sponse to nonaxisymmetric perturbations is important.

The ELM generates its own magnetic perturba-
tion. A magnetic tangle was first identified in M3D
simulations[30]. It had not been considered in previous
analytical or numerical studies (cf. review[8]). The lin-
earized, small perturbation plasma theory[31] does not
allow asymptotic field splitting. For linearized balloon-
ing modes, analytical solutions exist only for interior
flux surfaces[2, 32] and boundary surfaces without X-
points[33]. Linear MHD stability codes can solve the
linearized equations for X-point boundaries, but without
surface splitting. KINX[34] assumes a radial displace-
ment ξ · ∇ψ = 0 on the boundary flux surface, while

ELITE[35, 36], MISHKA-1[37], and other stabililty codes
evaluate interior magnetic flux surfaces up to more than
99% of the X-point boundary, to converge in the limit to
the full fixed boundary result. The linearized limits of
nonlinear simulation codes also typically assume a fixed,
unsplit boundary.

Nonlinearly, freely moving X-point plasma boundaries
are difficult to simulate. Some numerical models use
field-line-following or flux-tube approximations[38] or as-
sume limited evolution of the field or plasma current.
Many use simplified plasma models, such as reduced
MHD, or full MHD with a limited number of toroidal
harmonics[39–41]. Almost all use unrealistically large
values for the plasma resistivity and other dissipative
coefficients compared to experiment, for reasons of nu-
merical stability. Sharp differences between the plasma
interior and “vacuum” typically concentrate in a narrow
gradient region around the plasma edge and must be re-
duced [42]. In addition, the formation of a homoclinic
tangle depends critically on the Hamiltonian form of the
magnetic field, which is guaranteed by ∇ ·B = 0. Codes
that advance vector components of B in time often find
this condition difficult to satisfy accurately. Thus, while
all the nonlinear simulations that included a freely mov-
ing plasma boundary with an X-point (M3D[27, 30, 39],
NIMROD[40], JOREK[41], and others[42]) saw evidence
of field stochastization, its true degree and cause could
not be determined.

Experimental observations of ELMs are also limited.
Observable regions are limited and vary from experiment
to experiment. Many quantities are difficult to measure,
particularly inside a hot fusion plasma. Stochastic quan-
tities are even harder. Many measurements have low spa-
tial or temporal resolution compared to the few Alfvén
times of MHD evolution. They may integrate along mul-
tiple chords through the plasma or over long time inter-
vals, making interpretation difficult.

The M3D code [43, 44] is an initial value, extended
MHD code, that specifically preserves ∇ ·B = 0. Earlier
M3D simulations of large ELMs[27, 39] at lower resolu-
tion did not consider tangle effects. An upgraded code,
at higher spatial resolution, was required[30].

This paper reports results at more realistic parame-
ters, including the actual, or nearly actual, resistivity.
Section II describes the numerical model and the simu-
lation cases. The magnetic tangle leads to a character-
istic multi-stage ELM instability, summarized in Section
III for a large Type I ELM in DIII-D. Section IV illus-
trates the early nonlinear formation of a characteristic
helical, filamentary shape. Section V discusses the ELM
stages in terms of a magnetic tangle. Section VI presents
some quantitative effects of the tangle on the early ELM,
including the scaling of growth with resistivity and the
constraining effects of the magnetic tangle on the early
ballooning. The final section is a summary.
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II. NUMERICAL MODEL

Numerical simulations were carried out with the M3D
initial value code[43], using MHD and two-fluid[44] mod-
els. It simulates a plasma with a freely moving boundary,
surrounded by a resistive MHD vacuum that is bounded
by a rigid, partially conducting wall of infinitesimal thick-
ness. The vacuum is characterized by low density, zero
temperature, and very high resistivity, used to approxi-
mate zero current. The magnetic boundary surface of the
plasma (last closed flux surface or LCFS) has one X-point
on its lower tip. A second X-point is located a short dis-
tance outside the plasma, above and inboard of the top.
The configuration, including the vacuum field and the
wall representing the vacuum vessel, is taken from DIII-
D experimental reconstructions using EFIT[45, 46]. The
wall is slightly smoothed.

The paper concentrates on two well-analyzed DIII-D
discharges, 119690 at t = 2656 ms[19, 47] and 126006 at
t = 3500 ms[48].

Discharge 119690 had an ITER-similar shape, but rel-
atively high plasma density and collisionality, νe = 0.7.
It also had a very steep, narrow edge pressure gradi-
ent that was MHD unstable to ballooning-type modes.
There were no precursor oscillations. The plasma had
toroidal magnetic field BT = 1.60 T at major radius
Ro = 1.76 m, current Ip = 1.042 MA, central density
neo = 1.2×1020 m−3, temperature Teo ≃ Tio = 1.83 keV,
and normalized βN = 1.81. The neutral beam heating
power was PNB = 4.8 MW. The edge safety factor was
q95 ≃ 3.75. The central value of qo just above unity made
the simulation sensitive to a 1/1 magnetic island, while
the experiment had sawteeth during the ELM phase. The
∇B drift was toward the lower X-point. The equilibrium
included a large, narrow bootstrap current layer along
the outboard plasma edge, calculated using the standard
DIII-D neoclassical transport method[46]. One caveat is
that the “experimental” density profiles over the plasma
edge region were not measured directly, but fit using the
standard DIII-D tanh function.

Case 119690 was atypical for DIII-D, in that the ELM
could be completely stabilized by applying a nonaxisym-
metric n = 3 field (RMP) with odd parity across the
midplane[19, 47], instead of the usual even parity. The
simulation used a wide inboard vacuum layer between
the plasma and the wall, with the true wall location ap-
proximated as the major radius R where the resistive and
viscous dissipation became very large. Other cases, with
different Type I ELMs, were also simulated. These in-
cluded discharge 126006 at 3500ms[48], where ELMs were
stabilized by an even parity RMP, and 113317, a JET-
shaped H-mode discharge with smaller ELMs. They used
the true inner wall location, with similar inboard results.

The baseline simulations assume a stationary equilib-
rium. The actual plasmas had significant equilibrium
toroidal rotation.

M3D solves the compressible, resistive MHD equations
with density and temperature evolution[43]. The density

evolves by the continuity equation, The form of the mag-
netic field satisfies ∇ · B = 0 at every time step.

No fourth order hyper-resistivity or viscosity was used.
The diffusive part of the density upwind advection[49]
was used for the density and pressure. The diffusion co-
efficient is proportional to |v⊥|dx where dx is the length
of a segment connecting the midpoint of a triangle edge
to the triangle barycenter and v⊥ is the fluid velocity per-
pendicular to φ. The toroidal velocity used the diffusion
coefficient v2

⊥ ∆t, also related to the upwind advection,
for numerical stability.

A large resistive and viscous damping was applied in
the vacuum very near the bounding wall. The perpen-
dicular thermal conductivity was also large there. Some
cases, including the reference simulation, used a wider
damping region near the inboard wall.

Typical values of resistivity corresponded to Lundquist
numbers S = 3.3× 106 to 3.3× 107 in the plasma at the
top of the edge pedestal. The “vacuum” Svac = 103. For
119690, S = 3.3 × 107 is the actual plasma value, based
on Zeff ≃ 3. The normalized kinematic ion viscosity
was typically µi/ρ = 6 × 10−6, Effective thermal diffu-
sivities were κ⊥ = Dn = 10−5 and κ‖ = 3.53(Ro/ao),
modeled by the M3D artificial sound wave method[43].
Code lengths are normalized to ao = 1 m. Times are
normalized to the Alfvén time τA = Ro/vA, based on the
vacuum field and density at the magnetic axis R = Ro.
For 119690, the reference τA = 0.78 µs. For 126006,
τA = 0.43 µs.

Most cases used linear triangular finite elements (finite
volumes) in the poloidal plane; a few used third order.
The spatial grid in each poloidal (constant-φ) plane was
packed around the plasma edge, more tightly on the out-
board side. Typical numbers of vertices in one plane
ranged from 15700 to 20000. The radial packing barely
resolved the steep edge density gradient and current den-
sity in case 119690, but varying it did not significantly
change the results.

The typical range of toroidal mode numbers was |n| =
0 to 23. A few higher resolution runs with |n| ≤ 47 modes
showed that the basic nonlinear instability fell within the
lower range.

MHD requires a finite vacuum density to keep the
shear Alfvén velocity finite. It was typically taken to
be nvac/no = 0.1–0.2, with 0.1 for the reference 119690
case. (The earlier strongly unstable case in Ref. [30] used
nvac/no = 0.4). The vacuum pressure, temperature, and
current density were initially zero.

Plasma sources and sinks were neglected, beyond small
sources that compensate the diffusion terms to help main-
tain the equilibrium and and a small implicit source to
keep n ≥ nvac. These have little effect over the simu-
lations. Ionization, impurity ions, and wall interactions
are beyond the scope of the simulation. Heating was
also neglected. The velocity boundary condition at the
wall was normal velocity vn = 0 with slip tangential
velocity, while the density and temperature were held
constant. The parallel electrical sheath at the wall was
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neglected, since MHD is strictly quasi-neutral. The re-
sults suggest that a sheath condition or additional physics
may be important, since large localized currents may de-
velop transiently near the wall, a phenomenon also seen
in experiment[50].

The reference simulation for case 119690 used approx-
imately 330 cpu-hours on 360 processors on a Cray XT-4
for 600τA. A shorter simulation of 126006 at higher reso-
lution used approximately 200 cpu-hours on 432 proces-
sors for 330τA.

Other uncertainties remain. The experimental data
used for the equilbrium may not be completely consis-
tent. Most importantly, the edge pedestal location and
plasma profiles may not match exactly. Due to the in-
evitable constraints on computer time and availability,
the simulations were barely resolved numerically, particu-
larly near the X-points. The plasma center had relatively
coarse resolution. Toroidal rotation and error fields, im-
portant factors in experiment, have been largely ignored.
In addition, physics beyond extended MHD may be im-
portant. Further work is needed to address these issues.

III. MULTI-STAGE ELM

The resulting ELM occurs in several stages. This
summary is based on the reference DIII-D 119690 case,
which was strongly unstable at the actual resistivity
S = 3.3 × 107. Other DIII-D ELMs were qualitatively
similar, with differences of degree. An earlier 119690
case[30], run at more extreme parameters, shows simi-
lar behavior despite an unrealistically strong instability.

The simulation was started with a small random per-
turbation of all n 6= 0 toroidal harmonics of the toroidal

vorticity w = (−Ro/R)φ̂ · ∇ × v. Figures 1–6 show
the evolution of main instability and part of the heal-
ing phase, over 604τA or 0.47 ms.

Many features resemble experimental observations[7,
51]. Other predictions are new. Important elements in-
clude the fundamental filamentary, helical nature of the
plasma and magnetic structures near the outboard sepa-
ratrix, an initial large, rapid plasma ballooning-type out-
burst over most of the outboard side, followed by a sec-
ondary inboard edge instability, plasma loss in concen-
trated blobs directly to the divertors from both the out-
board and inboard sides of the X-points, multiple quasi-
periodic cycles of instability and plasma loss with de-
caying amplitude on both inboard and outboard sides,
and eventual healing towards the original axisymmetric
configuration.

A. Outboard ballooning instability

The simulation cases were initially MHD unstable to
ballooning-type modes. The instability grows in the
steep pressure gradient region on the outboard side of the

plasma, near the horizontal midplane, shown by the tem-
perature in Fig. 1a (the density also shows some small,
cold axisymmetric perturbations that do not affect the
mode). The perturbation rapidly consolidates nonlin-
early to a characteristic filamentary helical shape with
toroidal and poloidal localization along the equilibrium
field lines (cf. Fig. 7a,b). Above a certain threshold am-
plitude, the volume averaged growth rate rises rapidly,

Fig. 2 at t
<
∼ 40τA.

B. Off-midplane growth and ballooning outburst

As the harmonics consolidate, the instability begins to
grow more strongly at some ±60 degrees off the mid-
plane, Fig. 1b or Figs. 3–4a with midplane profiles. The
off-midplane fingers appear to grow semi-independently,
but are connected to the midplane along equilibrium field
lines. Temperature and density fingers then rapidly burst
outwards over the entire outboard side, over some 20–30
µs (cf. Fig. 7c). Temperature fingers are longer and more
clearly defined than density. Equilibrium toroidal rota-
tion increases the strength and definition of the outward
fingers.

The local density gradient broadens rapidly on the
outboard midplane, to well inside the original edge
pedestal[27, 39]. The edge temperature gradient is
less affected. The volume-averaged exponential growth
rate, defined from the square root of the kinetic en-
ergy integrated over the entire simulation domain,
(
∫
dx3(nmv2/2))1/2, grows rapidly during the initial

mode consolidation and the beginning of the ballooning
burst to peak at t ≃ 37, then drops abruptly as the mid-
plane ∇n weakens, although the plasma fingers continue
to expand, as shown in Fig. 2.

As the ballooning burst saturates, the near-midplane
plasma bulges shorten and smooth out. Outside the orig-
inal LCFS, density concentrations or “blobs” shear off
poloidally from the plasma, Fig. 1. Off the midplane,
the lower density regions that alternate with the outgo-
ing plasma fingers, also finger-like, grow inwards deeply
into the plasma, apparently up to some bounding inte-
rior flux surface. (In 119690, the limit was q ≃ 1 as the
central qo dropped below unity and a 1/1 island formed.)
Plasma is lost to the outboard side, first near the mid-
plane, then to the off-midplane regions. A small inboard
edge disturbance may also occur.

Few experimental observations of the off-midplane re-
gion exist. Alcator C-Mod sees large plasma fingers on
the outboard side near the lower X-point[52]. Their an-
gle, more vertical than transverse to the flux surfaces,
resembles that of the simulation (e.g., Figs. 5c,d or 7c,
density).
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FIG. 1: (Color online) Initial mode and ballooning outburst for an ELM in discharge 119690 with S = 3.3 × 107. Contours of
temperature (top row) and density (bottom) at a) t = 21.5τA, b) 42.8, c) 62.3, d) 83.4, and e) 104.6. The surrounding light
gray region is the vacuum. Ballooning fingers extend rapidly between t ≃ 42.8 and 62, then slow. The disturbance contines to
develop inwards.

FIG. 2: Volume averaged growth rate γ as a function of time
from t = 0 to 604τA, for the 119690 reference case. Initial
ballooning growth rate peaks by t ≃ 37 (first peak), then falls,
while plasma fingers continue to extend. Outward ballooning
subsides by t ≃ 100 and density clears from the outboard SOL
by t ≃ 160. Large jump at t ≃ 170 (largest spike) reflects
the first large density loss from the inboard midplane. Later
quasi-periodic bursts (and small early one near t ≃ 100) are
associated with pulses of inboard density loss.

C. Density loss to the divertor from near the

X-points

In the second part of the ballooning outburst, starting
at t ≃ 72, density fingers push out from near the X-points
and detach into concentrated blobs outside the plasma,
just outboard of the X-points. The lower blob moves
promptly down into the adjacent outboard divertor, then
drifts more slowly down and along the walls, staying out-
side of the outboard X-leg, Fig. 1d,e. This wall contact
is a likely source of the ejected deuterium atoms that
produce the strong pulse of D-α emission in the divertor
that characterizes the ELM. On the top of the plasma, a
ridge of relatively cold density peels up and off towards
the inboard side, Fig. 1d. It connects to the upper di-
vertor along the upper X-point outboard leg. A nearly
vertical density ridge remains for over 140µs, Figs. 1e and
4b–c. The remnants of the density are decaying in both
divertors by around t = 227, Fig. 4c.

In contrast to the density ejection near the X-points,
the temperature and pressure are expelled more evenly
over the outboard side and flow along the helical uncon-
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fined field lines to the divertors, over a longer interval of
several 10’s of µs. After the initial ballooning, outboard
finger growth may recur, but it never reaches the extent
or strength of the primary outburst and remains within
a small radial distance outside the original LCFS and
poloidally closer to the midplane.

Experimental camera pictures of edge density blobs ob-
tained from visible emission have approximate parameter
dependences n0.6T 0.5[53]. Time-plots of this expression
show stronger flow along the field lines than cross-field
movement, quite similar to the pressure p = nT .

The timing of the major initial divertor losses to the
outboard then inboard sides, relative to the initial bal-
looning losses near the midplane, is similar to experimen-
tal observations[7], although the proposed mechanism is
different.

D. Stochastization of the magnetic field

The magnetic field stochasticizes from the plasma edge
inward, following the inward growth of the low density
and temperature fingers in the off-midplane region, Fig. 5
at t = 43 and 62. Much of the stochasticity develops
early, by t ∼ 100, but the interior field continues to
evolve, particularly on the inboard side.

Most field lines in the stochastic region mix radially
over all or part of the affected region, although the ab-

solute field perturbation is small, |ψ̃|/|ψo|
<
∼ 0.01 in the

poloidal flux. Most interior field lines are confined over
many toroidal circuits, except those very near the orig-
inal LCFS. Field lines are actually lost from near the
X-points to the divertors. Many from the stochastic re-
gion are eventually lost to the lower divertor. Some are
lost to the upper divertor.

The central plasma density loss is larger and faster
than the temperature loss, consistent with experimental
ELM and RMP observations. In 119690, the relatively
large loss of central density and temperature results from
growth of a central 1/1 magnetic island, as the initial
qo ≃ 1 drops below unity. The island is clearly seen in
the puncture plots and in the temperature flattening in
Fig. 3. Other ELMs, without internal modes, show little
central loss.

There is little evidence of exterior field line loops con-
necting back into the plasma from the ballooning fingers,
except from a short distance outside the original sep-
aratrix. Exterior field lines remain largely unconfined,
similar to the equilibrium field. Other simulations[41]
agree. This picture differs from flux-tube based mod-
els of plasma ballooning fingers[54]. In fact, many field
lines lying just inside the original separatrix, but outside
the higher density fingers, are rapidly lost through the
X-points. This tends to create an annular region near
the plasma edge that is only partially connected to the
plasma interior, despite the radial excursions of interior
field lines into this region.

E. Inboard edge instability

After the initial ballooning burst subsides, the out-
board exterior region begins to clear of plasma. Quasi-
periodic outboard disturbances may continue to expel
plasma, but at a reduced level and the fingers never reach
the extent of the original burst. The interior plasma
instability and inboard magnetic tangle continue to de-
velop, as suggested by the ripples in Figs. 1d,e and 3–4b.
Along the inboard edge, the density first develops one
or two narrow ridges parallel to edge, similar to the ex-
pected loops of a homoclinic magnetic tangle. It then
affects more interior regions around the midplane. Once
this disturbance expands again to the inboard edge near
the midplane, it triggers a strong edge instability. Two
concentrations of cold plasma bulge outward, nearly sym-
metrically across the midplane, as in Fig. 4e, which cor-
responds to the last growth rate spike in Fig. 2. The
bulges separate and travel vertically up and down along
the plasma edge e.g., Fig. 4d, then b. In the upper and
lower divertors, density and temperature may partially
accumulate near the inner magnetic X-leg, Figs. 3–4c.
Eventually they are lost to the walls. The temperature
variation is smaller than for density in general.

For the steep, narrow edge pressure gradient of 119690,
the inboard instability is strong and repetitive, as in
Fig. 2. Before the first large inboard spike at t ≃ 170,
the initial outboard instability has largely subsided and
the outboard region begun to clear of plasma, (Sim-
ilar, but smaller, inboard edge instabilities with lim-
ited plasma loss may occur earlier during the ballooning
phase, Fig. 1d–e.) A strong inboard instability may cause
the lower X-point to temporarily elongate and curve in-
ward, as in Fig. 4d. More density is lost in a wider band
along the inboard X-leg. The X-point displacement is
limited and typically restores, Fig. 4e.

In NSTX, periodic decreasing inboard-edge pulses of
D-α light are regularly observed near the midplane, fol-
lowing the main outboard ELM loss. They are attributed
to pulses of density lost from the inboard side midplane.
NSTX also observes sequences of density blobs travelling
down along the inboard plasma edge to the lower diver-
tor in smaller ELMs ([55], Fig. 12). Most other plasma
experiments do not measure the inboard side.

In experiments, the plasma and energy in the ELM fil-
aments ejected in the outboard midplane region generally
constitute only part of the total energy deposited on the
divertors[7]. The simulation suggests that the difference
may result from inboard losses, with some contribution
from direct loss near the X-points on both sides.

F. Saturation and healing

The main ELM crash occurs before and during the two
initial pulses of plasma to the outer and inner divertors.
Over longer times, the outboard plasma boundary re-
stores towards its original shape, including the X-point.
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FIG. 3: (Color online) Temperature evolution for the reference case, shown as contours in the plane φ = 0. Bottom row,
corresponding profiles across the horizontal midplane, exact (lighter/red) and toroidally-averaged smoother curve (darker/blue).
Times a) t = 43, b) 126, c) 227, d) 462 and e) 530. A central 1/1 island reduces central To and no.

FIG. 4: (Color online) Density contours and profiles show greater anisotropy than temperature. Reference case, for the same
times as Fig. 3.
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FIG. 5: (Color online) Magnetic puncture plots show asymp-
totic field splitting and tangle structure. Top t = 43, bottom
t = 62 for the reference case at φ = 0. Left plots (a,c) shows
field lines traced in the +φ-direction (BT ), right (b,d) in −φ,
from the same starting points. t = 43 shows mostly good
nested interior surfaces, with a narrow m/n = 1/1 island. By
t = 62, the unstable tangle manifold loops have grown on the
outboard edge. The interior, not shown, has good flux sur-
faces with a 1/1 island over r/a < 1/3. The +φ-direction has
bigger loops near the bottom, −φ near the top. (Color shows
relative starting location of the field lines along the inboard
midplane, blue-green-yellow-orange-red from small to large r.
Outer lines are unconfined.)

In 119690, the outboard density boundary smooths by
t ≃ 184. In other cases, such as 126006, the near-
midplane region may later refill with additional local den-
sity from the plasma.

The interior magnetic field remains superficially
stochastic at a low level beyond the simulation interval
of several hundred µs. Nevertheless, the plasma interior

FIG. 6: (Color online) Nonaxisymmetric toroidal harmonics
of temperature T and density for the reference case. Curves
show times t = 43 (solid line/black), 126 (dashes/blue)
227 (dot-dash/green), 461 (dots/red), and 604 (wide-spaced
dashes/brown). Harmonics grow during the ELM crash
and first inboard instability at t = 170–180, then fall, ex-
cept that n = 1 remains high due to a 1/1 central island.
Normalized L2 norm over the volume inside the bounding
wall, (

R

dx3|fn|
2/

R

dx3)1/2, plotted against harmonic num-
ber. Equilibrium n = 0 harmonics are large, T0 = 0.0211 and
n0 = 0.520.

relaxes towards axisymmetry, with small oscillations, as
shown by the midplane profiles in Figs. 3–4. Depending
on the configuration, large scale, low-n and m interior
structures may develop at longer times. In the 119690
case, a central, approximately 1/1 magnetic island grows
and decays. At the actual resistivity, reconnection was in-
complete, although complete sawtooth reconnection oc-
curred at S ≤ 3.3 × 106. In 126006, q > 1 and another
low-mode-number (n = 1, 2, 3) structure developed at
mid-radius. In the experiment[48] an n = 2 structure
developed after the toroidal rotation fell below a certain
threshold.

The plasma in the divertors may continue to evolve
over longer times, replenished by sporadic inboard insta-
bilities. The divertor temperature has a roughly inverse
distribution to the density.
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G. Plasma rotation

Without equilibrium toroidal rotation, the initial out-
board ballooning burst does not rotate in MHD, as ex-
pected theoretically. Poloidal rotation may develop, but
no coherent toroidal rotation of the flux or density sur-
faces.

During the strong ballooning phase, oppositely di-

rected flow vortices ⊥ φ̂ develop in the upper and lower
halves of the plasma cross section. Starting as thin layers
near the plasma edge, they expand to fill the upper and
lower sections, over 1/3 to 1/2 of the minor radius from
the X-points. The flow circulates outwards in R in the
interior, then around the plasma edge towards the local
X-point, counterclockwise at the top, clockwise at bot-
tom. In the divertor region, just inside and outside the
LCFS, toroidal rotation develops quickly in the direction
of the parallel motion driven by the vortices, counter-BT

in the upper divertor (−φ or into the page in Figs. 1,3,4)
and opposite in the lower divertor. This rotation is car-
ried into the divertor region by the plasma. It persists
well into the ELM healing phase, although it may be
temporarily quenched by the arrival of inboard density
blobs. At later times, the inboard plasma edge also tends
to rotate toroidally in the counter-BT direction.

Immediately after the initial outburst, the outboard
plasma edge and detached blobs move poloidally, but
their direction is not coherent. It initially tends to be
counterclockwise (upwards or in the electron diamagnetic
direction for a downward∇B drift). Partial or temporary
direction reversals may occur variously in the upper and
lower halves of the plasma, partly correlated with the pe-
riodic inboard instabilities that drive motion toward the
X-points. Outside the plasma, density blobs move fairly
coherently, but unsynchronized with the nearby plasma
edge. Their direction also reverses in time.

At longer times, the plasma interior may develop a
more coherent poloidal rotation. The rotation is ex-
hibited more clearly by temperature contours than den-
sity. The source may be a poloidally asymmetric in-
board/outboard flux surface pressure imbalance due to
the X-point geometry[56] or particle diffusion[57], at a
rate that exceeds the damping due to magnetic pumping.
In the simulations, the interior rotation at mid-radius
eventually becomes clockwise, in the ion diamagnetic di-
rection or upwards on the outboard side. Once the inte-
rior rotation is well developed, it appears to enchain the
plasma edge motion in the same direction.

Large low-n interior structures may grow and lock the
poloidal rotation, as in case 126006. The plasma then
bulged outward to contact the near-midplane walls.

Experiments observe a variety of poloidal motions for
ELM filaments and density blobs, without a systematic
explanation. The simulations suggest that the early mo-
tion is indeed fairly random and changes on fast time
scales. Non-MHD effects may also be important.

IV. EARLY NONLINEAR MODE

CONSOLIDATION

The early ELM instability develops a persistent, char-
acteristic filamentary shape in MHD or two-fluids, heli-
cally aligned along equilibrium field lines and localized to
varying degrees in both toroidal and poloidal directions.
The shape is consistent with a magnetic tangle.

The ELM trigger was not studied, since the simulation
cases were initially unstable to MHD ballooning/peeling
modes. Starting from a random disturbance of multiple
toroidal harmonics, the perturbation grows in the steep
gradient region on the outboard plasma edge, in the bad
magnetic curvature region. As it begins to coalesce, but
while the perturbation of the plasma boundary is still
small, it tends to be largest around the midplane (in
MHD) and radially mostly contained within the steep
pedestal pressure gradient. similar to a ballooning-type
eigenmode, as in Fig. 1a, temperature.

In the reference case, nonlinear mode consolidation
dominated over linear or quasilinear growth, as shown
by the oscillating growth rate in Fig. 2 for t < 40τA. The
rate and degree of consolidation depend on the plasma
parameters, but strong nonlinear consolidation was also
typical of other ELMs, even when the initial perturbation
amplitude was greatly reduced.

Figure 7 illustrates the early nonlinear consolidation
for a higher toroidal resolution run using |n| ≤ 47 har-
monics, twice the reference case. The case is two-fluid[44]
with the experimental strength H = c/Rωpi = 0.015,
but MHD behaves similarly. The structure develops ear-
liest and most coherently in ψ̃, then T̃ and ñ. All three
form similar high n,m ripples around the outboard side
of the plasma, frame a). The highest harmonics n ≃ 40–
44 were prominent, consistent with the increasing growth
rate with n of mostly ideal ballooning modes. (The refer-
ence case had n ≃ 20–23, again the maximum possible.)
At both resolutions, the early instability rapidly consol-
idated (frames b-c) into a similar moderate n = 6–10
perturbation with some n = 12, modulated by a low-
n envelope with n = 1–3. The reference case spectrum
is shown in Fig. 6. The general banded helical shape,
slighlty smoothed, persists for long times.

The nonlinear perturbation resembles the localized
bands or “filaments” of light emission aligned along equi-
librium field lines that are seen in DIII-D[58–60] and
many other experiments[61–65]. Unfortunately, no ex-
perimental pictures exist for the simulated cases. The
lower harmonics of the consolidated instability match
the observed filaments better than the higher harmon-
ics predicted by single-mode MHD growth rates. The
poloidal magnetic flux ψ̃ typically develops the cleanest
helical structure early and suggests the possibility of a
clear magnetic signal early in the ELM crash.
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FIG. 7: (Color online) Nonlinear consolidation of harmonics
leads to a helical filamentary plasma structure around the
LCFS, shown by the perturbed poloidal magnetic flux ψ̃ (left
frames). Times a) t = 26, b) 40, and c) 52, from small to
large perturbation size (density contours shown at right). ñ

and T̃ have similar structure to ψ̃. High toroidal resolution
(n ≤ 47) two-fluid run of 119690 with no equilibrium toroidal
rotation, initially perturbing all nonzero harmonics. Frame c)
is rotated 90 degrees to show structure.

V. DISCUSSION: MAGNETIC TANGLE

A. Equilibrium magnetic field

The equilibrium magnetic field configuration strongly
influences the ELM. In the early stages, it determines
where and how the asymptotic field splitting is most eas-
ily produced. Ballooning modes are strongly aligned to
the magnetic field and the perturbed field lines remain lo-
cally mostly aligned to the equilibrium field lines, even as
the flux surfaces break up and the field lines mix radially
due to the ELM. This allows other, more slowly growing
instabilities that depend on the equilibrium configuration
to develop eventually.

For DIII-D plasmas with q95 ≃ 3.5, field lines over most
of the outboard side wrap approximately once toroidally
as they move from the top to bottom of their flux sur-
face, as shown by the essentially field-line-following per-
turbations in Fig. 7. In a spherical torus at higher q95,

outboard field lines have a more vertical pitch and cover
a smaller fraction of the toroidal circumference between
top and bottom e.g., half or one-third in NSTX or MAST.
Tighter toroidal winding near the top and bottom com-
pletes a full circuit, while extra toroidal winding occurs
on the inboard side. In addition, near the X-points field
lines wrap many times at the top and bottom, almost
toroidally. The mostly toroidal region may extend over a
surprisingly wide minor radius at the top and bottom of
the plasma, compared to the narrow flux surface separa-
tion on the outer midplane. The dense toroidal winding
makes it easy to grow field loops almost vertically inward
in these regions.

The unconfined field lines on the outboard side also
wrap approximately once toroidally over the plasma
height, except very near the wall, where they may hit
the wall. Above and below the plasma, they may wrap
a few additional times, mostly toroidally, before hitting
the walls. On the inboard side, the unconfined field lines
again approximately follow the confined near-edge field
lines, wrapping a similar number of times between top
and bottom.

D-shaped plasmas thus have relatively little radial
shear over their outboard side, from q ≃ 1 to well outside
the plasma near the wall. This gives ballooning modes
a very coherent helical structure even at large amplitude
and strengthens the parallel coupling of the top and bot-
tom of the plasma.

B. Homoclinic-like tangle

The instantaneous toroidal magnetic field forms a
Hamiltonian system[11] with two degrees of freedom,
whose mathematical theory is comparatively simple and
well developed[12, 13]. The ELM magnetic field exhibits
many of the features of a theoretical homoclinic tangle
due to a single X-point. It also experiences some hetero-
clinic tangle effects due to the detached upper X-point,
as also observed in RMP studies[66].

The ELM tangle differs from the ideal Hamiltonian
form when its time evolution is considered. The ideal
theory is valid for sufficiently small perturbations, but
produces infinitely large disturbances over infinitely fine
scales. The actual plasma response is finite, limited by
the MHD times and other plasma processes. In the sim-
ulation, it is also limited by the finite resolution of the
spatial grid.

The discrepancy is crucial to the ELM. A Hamiltonian
system preserves phase space volume, so that the “un-
stable” field loops should have equal areas on each side
of the original separatrix. Instead, the external ELM
magnetic loops have very limited extent, while the inter-
nal loops can grow deeply inward and continue to evolve
after the outboard ballooning saturates, leading to the
inboard edge instability.

Near-Hamiltonian asymptotic surface splitting is a spe-
cial case of the much more general splitting of invariant
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manifolds, not necessarily Hamiltonian. For the plasma
dynamics at higher dimension, ideal MHD has Hamil-
tonian formulations[67, 68] that allow the possibility of
equilibrium solutions that are invariant manifolds. Resis-
tive or extended MHD are not Hamiltonian. Resistivity
or an equivalent process is crucial for the tangle, by allow-
ing changes from a “frozen-in” axisymmetric equilibrium
field. The simulations strongly suggest that field split-
ting of a freely moving plasma magnetic boundary is a
robust process in extended MHD and may not even re-
quire primary X-points directly on the boundary, merely
sufficiently close.

A schematic interpretation of the nonlinear ELM mag-
netic tangle is shown in Fig. 8. Since the tangle is defined
only by its asymptotic limits, it is difficult to extract di-
rectly from a nonlinear state and the figure represents an
interpretation. The inboard and near-X-point loops are
drawn wider than actual, for clarity, cf. Figs. 1 and 9. In
3D, the loops form helical lobes, similar to Fig. 7.

The figure shows the well-developed nonlinear stage
immediately after the ballooning burst, but before the
inboard instability is triggered, t ≃ 100–160 in the ref-
erence case. At earlier times, narrow “unstable” loops
originating from ballooning unstable region just outboard
of the X-points grow around the plasma interior parallel
to the inboard edge, from both top and bottom. They
align closely along the height of the inboard edge, as sug-
gested (and exaggerated) by the ripples in Jφ in Fig. 9a.
The oppositely growing loops interact to create refrac-
tion patterns on the inboard side. Unlike the classic ho-
moclinic/heteroclinic tangle, these spread and appear to
curve inward near the midplane.

The thick lines represent axisymmetric equilibrium
flux surfaces. Arrows indicate the direction of successive
intersections of a field line. The segments connecting to
the X-points form the equilibrium stable and unstable

manifolds WS,U
u,l for the upper and lower X-points, as la-

beled. The thin lines show the perturbed unstable man-
ifold loops. On the outboard side, the unstable manifold
of the lower X-point follows the lower fingers as a field
line approaches the X-point. The unstable manifold of
the upper X-point (coincident with the stable manifold
of the lower X-point) follows the above-midplane loops
that approach the top of the plasma. The “stable” per-
turbed manifolds, defined by field lines traced away from
the X-point, remain close to the original surfaces. Sim-
ilar stable and unstable manifolds exist on the inboard
side of each X-point. The “unstable” manifolds on the
inboard side generally have smaller excursions, but may
grow temporarily during the later ELM, as suggested by
Fig. 4d.

C. Interchange instabiity

The toroidal current density Jφ, Fig. 9, interpreted as a
marker for potential magnetic reconnection, displays sig-
natures characteristic of interchange instabilities, rather

FIG. 8: Schematic interpreta-
tion of the magnetic tangle at
times t & 100, in a constant-
φ cross section. Thick curves
show equilibrium stable and
unstable (superscript) mani-

folds W S,U
u,l of the upper and

lower X-points (subscripts);
arrows show the direction of
successive field line intersec-
tions. Thin lines show the
perturbed “unstable” mani-
fold loops (WU

u not shown)
and a central bounding flux
surface. Orientation is for
a DIII-D plasma with BT

clockwise viewed from top of
torus and Ip opposite.

FIG. 9: (Color online) Toroidal current density (−RJφ) vari-
ation as a marker for magnetic reconnection suggests inter-
change, rather than magnetic tearing. a) t = 43 at beginning
of the ballooning outburst. b) t = 136 as ballooning subsides,
but inboard tangle develops. Coloring emphasizes a restricted
range around zero. Light color (yellow) and medium central
core (red) denote positive values. Dark narrow lines (blue) are
negative. Black is zero current, including the exterior vacuum.
Background curves show equi-spaced contours of |B⊥φ|.

than magnetic islands produced by tearing modes, par-
ticularly near the X-points.

Near the top and bottom of the plasma, the contours
align to form nearly vertical fingers pointing radially into
the plasma. Magnetic tearing would require progressive
helical resonances and breakdown of nested toroidal flux
surfaces into magnetic islands of increasingly fine scale.
The strong radial current alignment, persisting through-
out the tangle field penetration stage, would be difficult
to produce from the current extrema located at the X-
and O-points of magnetic islands, across rational surfaces
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of continuously varying safety factor q. It is consistent
with tangle loops formed by interchange, whose shape
depends on the equilibrium topology of the X-point and
adjacent surfaces. Other plasma variables, including the
velocity poloidal stream function u, suggest similar radial
alignment and have an interchange, rather than tearing,
parity.

The lack of islands also fits the expected effect of a
Hamiltonian tangle on nested interior surfaces in phase
space. The equilibrium flux surfaces affected by the tan-
gle break down almost immediately to chaos[14,17], in-
cluding the residual KAM surfaces.

The depth of the current density variation approxi-
mately matches that of the stochastic field region, Fig. 5,
which is slightly wider than the macroscopic disturbance
in density and temperature.

Field line tracing and magnetic puncture plots also
support a general lack of island structure. The punc-
ture plots show the characteristic appearance of near-
Hamiltonian chaos, with structures resembling 3D voids
or bubbles rather than islands, Fig. 5.

D. Magnetic structure

Despite its superficial stochasticity, the magnetic field
possesses overall structure. First, it generally follows the
plasma perturbation in n and T , or p. Second, locally the
field lines remain generally aligned with the axisymmet-
ric equilibrium field. Most interior field lines are confined
for many toroidal transits. A central core is almost com-
pletely confined. Outside this radius, many field lines
have radial excursions and are eventually lost from the
vicinity of the X-points to the divertors. For a single
lower X-point, more are lost to the bottom divertor.

Figure 10 shows that a single field line approximately
follows a single constant temperature contour over many
toroidal transits and the general T contours over longer
intervals. The shadowing is not exact. The line was
finally lost from near the X-point. This 119690 case had
equilibrium toroidal rotation and S = 3.3 × 106, but the
behavior is a general property and was similar in all cases.
(While the simulation may not always accurately follow a
single field line, the line actually traced represents a good
approximation to substantial pieces of real field lines[13].)

Partial confinement of some field lines within annular
flux volumes, rather than flux surfaces, may be seen rel-
atively early in the ELM. Different field lines have differ-
ing degrees of excursion, as suggested in Fig. 5 (online),
where nearby starting points lying on the inboard mid-
plane have similar color. Many individual field lines, par-
ticularly near the plasma edge, remain confined within a
relatively narrow annulus of the edge for long distances,
until lost from the plasma.

Faster loss of density than temperature, observed in
both ELM and RMP simulations[27, 39] when the tem-
perature equilibrates along field lines much faster than
the density, and in many experiments, argues against a

completely mixed stochastic field. The containment of
field lines for many toroidal transits, before localized loss
from small areas near the X-points, may help preserve
the temperature gradient by mixing the temperature over
a range of minor radii in both directions during many
toroidal circuits and also averaging over the excursions
of many individual field lines. The density crosses field
lines more directly by perpendicular diffusion, without a
compensating parallel mixing. Magnetic braiding[69] of
multiple overlapping islands predicts poorer confinement
of temperature than density, the opposite of the simula-
tion.

Evidence for preservation of the equilibrium field struc-
ture appears in the longer time behavior. The total
poloidal flux is only weakly perturbed. Over several hun-
dred Alfvén times, equivalent to a few hundred µs in the
DIII-D 119690 reference case, the plasma density and
temperature smooth back towards their toroidal averages
over most of the plasma, Figs. 3–4d,e, despite continuing
periodic edge disturbances. The higher toroidal harmon-
ics decay from their initial maxima, Fig. 6. An n = 1
component remains, due to the central 1/1 island, but
it is much smaller than the axisymmetric piece. The
plasma shape returns towards the original boundary, al-
though the magnetic field remains chaotic at a low level.

At intermediate times, well after the initial balloon-
ing subsides, large low-n structures can develop in the
plasma interior. In 126006, with q strictly above unity,
a large mid-radius structure with significant n = 2 de-
veloped that caused the plasma to bulge out near the
midplane to the wall. It locked the poloidal rotation. In
the experiment[48], an n = 2 structure grew when the
toroidal rotation was deliberately reduced to a critical
level. It eventually locked to the wall and caused an H
to L transition. The core MHD activity was correlated
with D-α emission in the lower outer divertor, consistent
with plasma loss to the outboard side.

E. Inboard edge losses

In most experiments the inboard plasma edge is MHD
stable, but ELM plasma loss is often observed from the
inboard side. The magnetic tangle provides a natural
mechanism for outboard ballooning to drive a delayed
inboard edge instability. The simulations show that the
inboard side can potentially play an important role in
ELM density and power losses.

The time delay for the first large inboard edge insta-
bility, after the outboard ballooning burst, some 100 µs
in the reference case, is similar to that observed in ex-
periments, roughly an ion transit time from outboard to
inboard along equilibrium field lines around the plasma
edge at the ion sound speed. The mechanism, however,
depends on the tangle development and does not require
plasma motion directly along field lines.

The wide inboard vacuum region in the 119690 refer-
ence case allowed the density and temperature to spread
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FIG. 10: (Color online) Surface of constant temperature lo-
cated inside the plasma, colored according to values of the
poloidal magnetic flux ψ, representing minor radius, and a
single magnetic field line started near the surface and traced
in the lower X-point “unstable” (Bφ) direction. The cut plane
shows equi-spaced temperature contours. Tilted up to show
the bottom of the plasma. Rotating 119690 case with refer-
ence parameters, except nvac = 0.2no.

slightly beyond the true wall distance before being lim-
ited by dissipation. The inboard behavior was qualita-
tively similar to the 126006 case using the exact plasma-
wall separation. In this case, the inboard density blobs
could extend nearly onto the wall. The simulations also
indicate that temporary density concentrations could
form in the inboard SOL just outside the plasma. Some
were nearly axisymmetric rings, while others had toroidal
gaps. The rings remain for varying periods before mov-
ing up or down the center stack, in some cases apparently
being swept out by the inboard edge activity.

VI. DISCUSSION: GROWTH RATES

A. Scaling with resistivity

Asymptotic magnetic field splitting requires breaking
the ideal MHD constraint in order to change the direction
of the field lines. The low values of resistivity typical of
fusion laboratory plasmas suffice for magnetic reconnec-
tion, i.e. slippage of field through the plasma, to redirect
the field lines locally over micro-scales. Although the
mid-section and top of the edge pedestal, where much of
the ELM action takes place, are only weakly resistive,
scans show that the ELM growth is partly resistive down
to low values of the central plasma resistivity.

Resistivity increases the growth rate of linearized bal-
looning/peeling modes that are near or beyond ideal
MHD instability[70]. It also increases the early non-
linear ELM growth. Table I compares the results for
MHD without equilibrium rotation, for the reference case
119690 at the actual peak plasma resistivity, Lundquist
number S = 3.3 × 107 and two higher resistivities,

S t(τA) γ |ψ̃|m |ñ|m |ñ| range no

3.3 × 105 21.5 -0.0105 5.1 × 10−6 0.0051 0.10/-0.11 1.00

3.3 × 106 21.5 -0.0106 4.4 × 10−5 0.106 0.15/-0.16 1.00

3.3 × 107 21.5 -0.0101 8.0 × 10−5 0.092 0.16/-0.19 1.00

3.3 × 105 42.8 0.0787 2.4 × 10−4 0.34 0.31/-0.37 1.00

3.3 × 106 42.8 0.0779 3.56 × 10−4 0.30 0.35/-0.33 1.00

3.3 × 107 42.8 0.0418 5.2 × 10−4 0.32 0.34/-0.22 1.00

3.3 × 105 64.1 0.0356 6.35 × 10−4 0.40 0.48/-0.42 0.99

3.3 × 106 64.1 0.0354 1.12 × 10−3 0.33 0.39/-0.45 0.99

3.3 × 107 62.3 0.0120 9.4 × 10−4 0.33 0.35/-0.37 1.00

3.3 × 106 101.2 -0.00341 0.00170 0.325 0.44/-0.33 0.98

3.3 × 107 104.6 0.00440 0.00147 0.37 0.41/-0.35 0.99

TABLE I: Scaling with resistivity

S = 3.3 × 106 and 3.3 × 105. Due to the complex struc-
ture of the multi-harmonic ELM, it is difficult to define a
universal growth rate. The table shows several local and
global parameters. The volume averaged growth rate γ is
based on the square root of the kinetic energy integrated
over the plasma plus vacuum, as in Fig. 2. Negative
values at t = 21.5, when the perturbation is small and
confined to a narrow layer near the plasma edge, reflect
the beating of toroidal harmonics.

The other parameters in the table measure changes on
the outboard side of the plasma. The perturbed poloidal
magnetic flux is shown by its maximum magnitude |ψ̃|m
near the midplane (subscript m), within an angle ±10
degrees measured from the magnetic axis. It shows rapid
initial growth over the edge pedestal region. Its growth
after t = 64 reflects magnetic changes deeper inside the
plasma. The total ψ remains nearly axisymmetric and
little changed, with equilibrium value |ψo| = 0.02 on
the magnetic axis and near zero at the separatrix. In
contrast, the maximum perturbed density near the mid-
plane |ñ|m quickly saturates in the edge region at ap-
proximately 1/3 the central peak value no = 1.0, showing
the rapid saturation of the initial ballooning on the mid-
plane as the local density gradient weakens. (The original
pedestal top np ≃ 0.7.) The perturbed density over the
outboard pedestal continues to grow, shown by the ex-
tremal values in |ñ| range, reflecting near-edge changes
well off the midplane, including the large fingers.

Lower resistivity reduces the outward ballooning. The
expelled density remains closer to the LCFS and more lo-
calized poloidally near the midplane and within the top
and bottom finger regions. The poloidal spacing of the
temperature and density fingers near the top and bot-
tom of the plasma varies, not always consistently towards
finer structure. Lower resistivity and viscosity also re-
duce the strongly backwards curling mushroom shapes
of the plasma fingers produced by flow vortices that re-
semble the classical Rayleigh-Taylor fluid instability. The
new shape more closely resembles experimental density
blobs.

The penetration of the lower density and temperature
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fingers into the core is less affected by resistivity. The
rate of inward growth of the plasma fingers and central
plasma loss slows at lower resistivity, but the penetration
depth remains similar over a factor of 100 in S, up to
at least S ≥ 3.3 × 105. The limit appears to be a low
rational number flux surface determined by the plasma
configuration. In 119690, where qo < 1, it extended to
q = 1. A completem/n = 1/1 central sawtooth crash was
observed at S ≤ 3.3× 106, but only partial reconnection
at S = 3.3 × 107.

Most H-mode fusion plasmas rotate toroidally. The
DIII-D cases also had significant rotation very near the
plasma edge[71]. Simulation indicates that rotation in-
creases the size of the outward ballooning fingers during
the initial outburst, in radial extension and somewhat,
in poloidal width. At S = 3.3 × 107, the increased am-
plitude was very roughly equivalent to a factor 10x in-
crease in resistivity. Similar to resistivity, rotation had
little effect on the final inner extent of the instability. It
also had little effect on the interior 1/1 mode in 119690,
consistent with the observation of sawteeth in the actual
experiment[47].

B. Field splitting and magnetic tangle effects

In the absence of a freely moving plasma boundary,
MHD theory encounters difficulties in explaining ELM
stability, even when X-points are included. Many H-
mode edge gradients are unstable to ideal MHD bal-
looning or peeling eigenmodes localized within the edge
pressure pedestal, when no ELMs appear in experiment.
The corresponding resistive modes are even more un-
stable. A large body of comparisons[35] shows that
the ideal MHD growth rate of single toroidal harmonic
modes must be systematically reduced to match the ELM
onset. One method[35] subtracts the ion diamagnetic
drift, γ = γMHD − (1/2)ω∗i, where the drift frequency
ω∗i = kθv∗i contains a poloidal wavenumber kθ = m/r
that can be large for high toroidal mode numbers n,
since m ≃ q95n. The factor 1/2 is imprecise, since
γMHD varies rapidly near marginal stability. Further-
more, ion diamagnetic stabilization is theoretically in-
complete. The present simulations using a diamagnetic
two-fluid model[44], show that ion diamagnetic effects
are relatively weak for realistic two-fluid strengths, for
the moderate toroidal harmonics of the nonlinearly con-
solidated instability.

Linearized perturbation theory[31] assumes a coherent
perturbation of the entire magnetic field, based on the as-
sumption of well-defined flux tubes. The perturbed field
behaves the same in both directions. The free boundary
plasma should behave similarly as long as the boundary
is not perturbed. At any level of boundary perturbation,
however, asymptotic field splitting occurs. Only the “un-
stable” half of the split field can move with a transverse
plasma displacement. The “stable” half remains close to
the unperturbed field and acts as a drag on the plasma

motion. These manifolds represent only asymptotic lim-
its, but combined with their intermediate connecting field
lines, should still exert extra drag compared to the lin-
earized theory.

To test these effects, the magnetic field can be artifi-
cially constrained near the X-points. Experimental tests
show effects, but they are difficult to separate from inde-
pendent changes in the pedestal, since increased wall cou-
pling tends to reduce edge pressure gradients. The JET
experiment has had several divertor configurations. Be-
fore 1994, the lower X-point was close to the bottom wall
and it saw mostly smaller Type III ELMs[9]. In 1994, the
plasma was raised and divertor pumps installed. The new
plasma saw mostly large Type I ELMs, but the plasma
shape and other factors changed. From 1999 to 2001,
a triangular “septum”[72] was installed between the X-
legs, with the gas box divertor. The top of the septum, a
broad rounded dome, stuck up far enough to contact the
plasma to varying degrees. ELMs occurred at reduced
size and frequency, but again the plasma edge changed.

Rigidly fixing the plasma boundary removes the field
splitting, but also removes the free boundary effects on
the linearized mode, i.e., the surface energy term in δW
due to the boundary motion. In the simulation, the
method of constructing and packing the spatial grid and
the fact that the plasma equilibrium makes small initial
adjustments to the grid prevented the separatrix from
being fixed exactly.

Removing the X-point by smoothing the boundary
shape changes essential features of the magnetic con-
figuration, i.e., the close spacing of the field lines on a
flux surface as they approach the top and bottom of the
plasma. Exterior stability effects also change, since the
adjacent flux surfaces become closed surfaces defined by
wrapped field lines, that are stable in the Hamiltonian
perturbation analysis.

Close walls also disrupt the continuity of the “un-
stable” manifold loops that define the tangle structure.
Field lines hitting a wall can move more independently
than field lines tied into the plasma on both ends.
The test therefore moved the domain walls close to the
plasma, in two steps. First, the upper X-point was cut off
by placing a planar horizontal wall above the plasma, at
20% of the distance between the plasma and the original
uppermost wall point (just below Z = 1.0 in Figs. 5 or
9). The magnetic field on the wall matched the equilib-
rium field there. In the second step, a horizontal planar
surface was placed just below the lower X-point, at 1% of
the original wall-to-plasma distance. The original field at
the wall location was again preserved. In both cases, the
linearized perturbation remains identical to the original.

Results are shown in Table II for the reference 11960
case of Table I at S = 3.3 × 107. (Small differences in
the models give slightly different numbers, but the mode
remains very similar.)

Removing the upper X-point (“top wall”) significantly
accelerates the early nonlinear instability. The initial bal-
looning instability grows much faster from small size to
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shape t(τA) γ |ψ̃|m |ñ|m |ñ| range no

original 21.47 -0.0100 8.0 × 10−5 0.092 0.16/-0.19 1.00

top-wall 21.50 0.0765 2.46 × 10−4 0.256 0.27/-0.28 1.00

two-wall 21.50 0.0240 2.17 × 10−4 0.260 0.27/-0.24 1.00

original 42.82 0.0415 5.20 × 10−4 0.328 0.33/-0.37 1.00

top-wall 42.80 0.0186 1.35 × 10−3 0.370 0.39/-0.36 1.00

two-wall 40.39 0.00893 8.42 × 10−4 0.367 0.39/-0.46 1.00

TABLE II: Constrained boundary

ballooning outburst. At a given time, the plasma fingers
extend further towards the wall, particularly off the mid-
plane. The generic shape is similar, but the fingers are
generally wider poloidally, with less fine structure near
the top and bottom of the plasma. The fingers in the
lower half of the plasma increase in size and shape simi-
larly to the upper half. These effects are consistent with
the removal of a constraint on the outboard magnetic
tangle. The “unstable” field lines are no longer confined
by the equilibrium field line spacing along the upper X-
point surface and the loops can change width to better
match the midplane-driven instability. Due to the conti-
nuity of the tangle field lines around the separatrix, the
lower loops are also less confined.

Disconnecting the lower unstable outboard manifold
loops (“two-wall”) has only a small effect, in the oppo-
site direction to the top wall. Due to the shape of the
plasma boundary and wall, the loops are cut off only
very near the X-point, providing a small localized effect.
The effect of removing the upper X-point dominates and
the early instability looks similar to the top-wall alone.
As in Table I, the average growth rate is a poor guide
to the amplitude during the early consolidation phase at
t = 21.5. The final time shown, t = 40.4, is earlier than
the other cases, due to numerical problems in the strongly
nonlinear stage. The grid points below the plasma were
squeezed between the X-point and the wall and shortly
after this time, numerical resolution was lost.

Thus, asymptotic field splitting and the resulting mag-
netic tangle act as a constraining force on the initial out-
ward ballooning phase of the ELM. The effect is consis-
tent with experimentally observed ELM stability trends.

VII. CONCLUSIONS

Numerical simulation of Edge Localized Modes in H-
mode plasmas in the DIII-D tokamak has been carried
out with extended MHD models in the M3D code, at
realistic and near-realistic resistivity. The results show
that ELMs in toroidally confined fusion plasmas repre-
sent a new class of nonlinear plasma instability, where the
plasma motion couples to part of a stochastic magnetic
field. The resulting multi-stage ELM has many features
similar to experimental observations in a number of ma-
chines. Losses to the divertor can occur directly from

near the X-points on both outboard and inboard sides.

In a toroidal plasma, a freely moving magnetic bound-
ary surface that contains one or more X-points behaves
similarly to a Hamiltonian dynamical system with two
degrees of freedom. As an unstable ballooning or peel-
ing mode grows in the steep pressure gradient near the
plasma edge, the plasma separatrix is perturbed and the
magnetic surface splits into two, defined asymptotically
by the limiting locations of the field lines when traced
infinitely in opposite directions. The “unstable” surface,
defined by the field lines approaching the X-point, devel-
ops large oscillations around the original boundary. The
“stable” surface remains near the original. The inter-
section of these surfaces forms a chaotic magetic tangle.
The actual tangle is non-Hamiltonian, but retains many
similarities to the idealized case.

Multiple toroidal harmonics consolidate nonlinearly at
low amplitude to produce a moderate mode number bal-
looning instability. Outward-ballooning plasma fingers
develop rapidly well off the midplane. An initial fast
ballooning outburst occurs simultaneously over most of
the outboard side. Near the X-points, the lower den-
sity fingers propagate deeply into the plasma core via a
field-aligned interchange process, together with the mag-
netic tangle loops. Interior magnetic flux surfaces are de-
stroyed without extensive resonant magnetic island for-
mation. Many field lines mix over significant radial dis-
tances and many are eventually lost from the X-point
regions.

The tangle couples the outboard to the inboard plasma
edge. An inboard edge instability can develop and pro-
duce significant plasma loss. The plasma eventually re-
laxes back towards the original axisymmetric configura-
tion. It may have decaying, quasi-periodic pulses of edge
activity.

A partly stochastic instability offers a potential expla-
nation for the large variety of ELM and ELM-free be-
havior observed experimentally in H-mode plasmas. The
“stable” half of the field and the constrained form of
the “unstable” loops approaching the X-points provide a
drag on the early instability that may help explain why
ideal MHD linearized pertubation theory alone generally
predicts excess instability. Plasma edge instabilities pro-
vide a natural mechanism for creating and sustaining low
levels of magnetic stochasticity in the plasma edge that
could explain the steep edge pressure gradient of the H-
mode and its requirement for a minumum level of plasma
heating.
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