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1.  Introduction 

The MHD model describes perpendicular dynamics of a continuous electrically 
conducting fluid medium permeated by a magnetic field.  The equations of the model can 
be derived by without recourse to kinetic theory1.  A basic assumption of the model is 
that all physical quantities are “averaged over elements of volume that are ‘physically 
infinitesimal’, ignoring the microscopic variations...that result from the molecular 
structure of matter”1.  In a plasma, this model cannot describe effects due to the cyclotron 
gyration of individual charged particles in a magnetic field (so called FLR, or finite 
Larmor radius, effects4), or the average drift of these orbits relative to the magnetic field.  
Further, in a hot confined plasma the particle mean free path parallel to the magnetic field 
often exceeds all other macroscopic scale lengths, thus negating the basic MHD 
assumption and dictating a kinetic treatment.  For these parameter regimes one must 
apply a fluid theory rigorously derived from the moments of the underlying kinetic 
equation2,3,5.  This procedure produces a hierarchy of equations for successively higher 
velocity moments of the distribution function.  In principle, this infinite set of equations 
is equivalent to the underlying kinetic description.  In practice, the set must be truncated 
at some order by an independent expression (closure relation) for the highest order 
velocity moment.  The resulting finite set of equations contains several non-dimensional 
parameters whose relative ordering (i.e., large or small) can further simplify the model 
and isolate specific physical effects. 

In this note we examine the role played by these non-dimensional parameters in 
elucidating the form of the fluid equations.  We will concentrate on the fluid momentum 
balance equation (derived from the first moment of the kinetic equation), as it illustrates 
the various forms found in the literature.  We will not be concerned so much with specific 
closure expressions as with the structure of the equations themselves.  For our purposes it 
is sufficient to know that appropriate closure relations exist.  (In fact, one may have 
several from which to choose.)  The goal is to illustrate self-consistent expressions of 
fluid momentum balance that incorporate the effects of finite ion Larmor radius4-10. 

The non-dimensional parameters that characterize the fluid equations are     ε =ω /Ωi, 
the ratio of the characteristic frequency to the ion gyro-frequency,     ξ = V0 /Vthi, the ratio 
of the characteristic flow velocity to the ion thermal speed,     δ = ρi / L, the ratio of the ion 
Larmor (gyro-) radius to the macroscopic scale length,     ν /Ωi, the ratio of the collision 

frequency to the ion gyro-frequency, and     β = (Vthi /VA )2 , the square of the ratio of the 
thermal speed to the Alfvén speed.  This latter parameter is not independent of the others 
since   β = δ /ξ .  In a magnetized plasma, one parameter, δ, can be considered small.  The 
other parameters are ordered large or small relative to δ .  The resulting equations will 
have terms that are proportional to various powers of δ .  By systematically ignoring 



terms that are smaller than some order of δ  we will arrive at a hierarchy of fluid models 
that are valid for describing different types of plasma dynamics. 

We distinguish between two- fluid effects and FLR effects.  Two-fluid effects arise 
simply because the electrons and ions flow as distinct fluids, as manifested by the 
relationship     J = ne Vi − Ve( ).  An example is the Hall term in Ohm’s law, which appears 
when this expression is used to eliminate the electron velocity in favor of the ion velocity 
in the electron equation of motion.  FLR effects arise because of terms that appear in the 
moment equations when the underlying kinetic equation is solved assuming an expansion 
in     ρi / L .  An example is the gyro-viscous (or cross) component of the ion stress tensor.  
Generally, both effects are required to obtain a self-consistent description of plasma 
dynamics at some desired order of accuracy.  

Hall MHD appears when we allow for large flows relative to the thermal speed 
(    V0 ~ Vth /δ ) and high frequencies (    ω ~ Ωi).  This model applies to very low-β  

conditions (  β ~ δ2).  In this model the consistent Ohm’s law contains the Hall term 
(  J × B ) but not the electron diamagnetic term (  ∇pe).  Restricting to smaller flows 
(    V0 ~ Vth ) but lower frequencies (    ω ~ δΩi) yields the usual MHD model, applicable 
when   β ~ δ .  In this model Ohm’s law contains neither the Hall term nor electron 
diamagnetic effects; whistler waves are too fast to be captured by the ordering.  

The drift ordering2,11-13 is restricted to slow flows (    V0 ~ δVth ) and even lower 

frequencies (    ω ~ δ2Ωi), but allows higher β (    ~ O(1)).  The resulting equations exhibit 

force balance to     O(δ2 ).  At     O(1) in this ordering we get the transport model, which 
ignores inertia and yields a diffusive description of the perpendicular flows.  Retaining 

corrections that are     O(δ2 ) in the ion equation, and     O(δ) in the electron equation (Ohm’s 
law), yields the drift model.  As in MHD, Ohm’s law does not contain the Hall term, but 
the electron diamagnetic term remains. 

The Hall MHD, MHD, and drift models are distinguished by the degree of force 
imbalance that is allowed.  In Hall MHD, unbalanced forces appear at     O(1) , in MHD at 

    O(δ), and in the drift model at     O(δ2 ).  In all models the ions and electrons flow as 
distinct fluids.  The Hall term (  J × B) formally enters the generalized Ohm’s law at the 
same order as the Alfvén term (    Vi × B).  The diamagnetic term (  ∇pe) may appear at a 
different order.  In the MHD and drift models the Hall term is eliminated from Ohm’s 
law by force balance considerations that must be deduced separately from the momentum 
equation, and not by any ordering of the electron dynamics.  This is a direct consequence 
of the low frequency assumption made in both models. 

The drift model can be put into a useful form by expressing the individual fluid 
velocities in terms of the common   E × B  drift of the ions and electrons.  In this form a 
remarkable cancellation (called the gyro-viscous cancellation2,5,6,8,12,14-16) occurs between 
the advective momentum flux and the gyro-viscous force.  This results in a relatively 
simple model in which the new terms appear as small corrections to ideal MHD.  This 
standard drift model can be generalized17 to make Ohm’s law exact to all orders of δ . 



Computational implementation of two- fluid models has been hindered by the high 
frequency whistler modes that are introduced by two- fluid effects.  These dispersive 
modes can be stabilized numerically by a non-symmetric semi- implicit operator18, at the 
expense of an extra matrix inversion every time step.  Whistler waves are eliminated 
analytically from both the MHD and drift models by the assumption of low frequency.  
However, in the drift model the dispersive kinetic Alfvén wave 19 (KAW) remains.  The 
KAW modes are described by a wave equation that is second order in time and fourth 
order in space, and is quite similar in structure to the whistler wave equation.  This 
suggests (but does not prove) that the KAW branch may be stabilized by algorithms that 
have already been developed for the whistler waves18. 

As a result of these considerations, a two-fluid model for extended MHD modeling 
of tokamak plasmas is proposed.  This model consists of the generalized drift model17 
supplemented by a semi- implicit operator to stabilize the remaining KAW branch.  Since 
the equations of this model bear a close resemblance to the MHD equations, 
implementation of the explicit terms should be relatively straight forward.  This model 
has the following desirable properties: 1) Both the Ohm’s law and the ion drift velocity 
are exact, i.e., they include corrections to all orders in δ  (although the equation of motion 

is accurate to     O(δ2 )); 2) The whistler branch is eliminated; 3) Fast flow are allowed; 4) 
The correction terms appear as simple additive corrections to the usual MHD model; and, 
5) It is possible that the remaining high frequency dispersive waves may be stabilized at 
arbitrary time step by existing algorithms18.  Resistivity and the thermal force can be 
implemented in a straight forward manner. 

This note is organized as follows.  In Section 2 we present the non-dimensional two-
fluid equations and introduce the parameters of the model.  In Section 3 we discuss 
various issues related to the stress tensor.  In Section 4 we present the Hall MHD model, 
and in Section 5 the “ideal” MHD model.  The drift ordering is introduced in Section 6. 
Section 7 briefly discusses the transport model, Section 8 discusses the standard drift 
model, including the gyro-viscous cancellation, and Section 9 introduces the generalized 
drift model.  Section 10 investigates the wave equations and dispersion relations for both 
whistler waves and kinetic Alfvén waves, and suggests that each may be numerically 
stabilized same (or similar) semi- implicit operator(s).  Section 11 shows that the drift 
ordering can be further generalized to accommodate large flows.  A final discussion of 
the proposed two-fluid model is found in Section 12. 

2.  Non-dimensional Fluid Equations  

The fluid moment equations are a shortcut to obtaining an approximate solution of 
the kinetic equation.  Understanding the role of the various terms the fluid equations is 
facilitated by writing them in non-dimensional form.  Assuming quasi-neutrality and 
neglecting the electron mass, the continuity and momentum balance equations for ions 
and electrons are 

      
ε

∂n
∂t

= −ξδ∇ ⋅ nVi = −ξδ∇ ⋅ nVe    , (2.1a,b) 

      
εξ ∂Vi

∂t
+ ξ2δVi ⋅ ∇Vi = − 1

n
δ ∇pi + Π i0

p0
∇ ⋅ Π i

 

 
 

 

 
 + ξ E + Vi × B( )  ,  (2.1c) 



and 

      
ξE = −ξVe × B −

1
n

δ ∇pe +
Πe0
p0

∇ ⋅ Πe
 

 
 

 

 
    . (2.1d) 

The friction force has been neglected for simplicity, and it is assumed that there exist 
independent expressio ns or equations for the scalar pressures  pα  and the stress tensors 
Πα .  The stress tensor will be discussed further in Section 3.  The non-dimensional “pre-
Maxwell” equations are 

      
ε ∂B

∂t
= −ξδ∇ × E    ,  (2.2a) 

and 

    J = ξ∇ × B   , (2.2b) 

along with the constituitive relation 

      J = n Vi − Ve( )   . (2.3) 

In Equations (2.1-3), the velocity is measured in units of     V0 (m/sec), the magnetic is 
measured in units of     B0 (Tesla), the density in units of     n0  (m-3), the electric field in units 
of     E0 = V0B0  (Volts/m), the current density in units of     J0 = n0eV0 (Amp/m2), pressure is 

measured in units of     min0Vthi
2  (Pa, where     Vthi = 2Ti / mi is the ion thermal speed), 

distance in units of     L ~ ∇⊥
−1 (m), and time in units of     t0 = ω−1 (sec), where ω  is some 

characteristic frequency.  This normalization allows the relative units of the electric field 
and current density to vary with     V0, thus keeping the non-dimensional dependent 
variables in scale.  The stress tensor is measured in units of   Πα0  (Pa); choices for this 
factor will be  discussed in Section 3.  The dimensionless constants appearing as 
coefficients in Equations (2.1-3) are 

  
ε =

ω
Ω

   , (2.4a) 

    
ξ =

V0
Vthi

   , (2.4b) 

and 

    
δ =

ρi
L

   , (2.4c) 

where     Ω = eB0 / m  is the ion cyclotron frequency and    ρi = Vthi /Ω  is the ion Larmor 

radius.  Note that the parameter     β = Vthi /VA( )2 , which is related to the normalized 
plasma pressure, is not arbitrary, but is given by   β = δ /ξ .  

The ion and electron fluid velocities can be decomposed into perpendicular and 
parallel parts: 

    Vα = V⊥α + V||α    . (2.5) 



From Equations (2.1c,d), the perpendicular parts can be expressed as 

      

ξV⊥i = ξ
E × B

B2
+ δ

1

nB2
B× ∇pi +

Πi0
p0

∇ ⋅ Πi
 

 
 

 

 
 

                                      + ξ
1

B2
B × ε

∂Vi
∂t

+ ξδVi ⋅ ∇Vi
 

 
 

 

 
    ,

 (2.6a) 

and 

      
ξV⊥e = ξ

E × B

B2
−δ

1

nB2
B × ∇pe +

Πi0
p0

∇ ⋅ Πe
 

 
 

 

 
    . (2.6b) 

The perpendicular ion and electron velocities have a common part,       VE = E × B / B2 .  
(This is sometimes called the MHD velocity.)  The determination of the parallel 
velocities may require a kinetic theory.  

Finally, Equations (2.1c,d) and (2.3) may be combined to yield  

      
n εξ ∂Vi

∂t
+ ξ2δVi ⋅ ∇Vi

 
 
 

 
 
 = ξJ × B − 1

n
δ ∇p + Π i0

p0
∇ ⋅ Π i

 

 
 

 

 
    .  (2.7) 

This is the equation of motion for the momentum carrying component of the fluid 
plasma.  In Equation (2.7), we have set   p = pe + pi .  We can also substitute Equation 
(2.3) into Equation (2.1d) to obtain the generalized Ohm’s law 

      
ξE = −ξVi × B + ξ 1

n
J × B − δ 1

n
∇pe + Πe0

p0
∇ ⋅ Πe

 

 
 

 

 
    . (2.8) 

Note that the terms     Vi × B and   J ×B  appear formally at the same order as   E.  The 
relative importance of these terms will be determined by force balance considerations 
(see Equation (2.7)). 

The importance the various terms in Equations (2.1-8) is determined by the relative 
sizes of the dimensionless constants given in Equations (2.4a-d).  For the strongly 
magnetized plasma considered here, we can always assume   δ <<1.  Different fluid 
models emerge depending on how we order the remaining dimensionless variables with 
respect to δ . 

First we must determine how to order the stress tensor. 

3.  The Stress Tensor 

Further progress requires some knowledge of the ion stress tensor   Π i. A well known 
formulation is that given by Braginskii20, which assumes small parallel mean free path, 
small Larmor radius, and collision frequency large compared with the characteristic 
frequency (see Callen3 for many useful details).  The stress tensor can be written in terms 
of its parallel (  bb), cross (  b × I), and perpendicular (  I− bb ) components as 

    Πi = Π|| + Π^ + Π⊥    , (3.1) 

where 



    
Π|| = − 3

2
η0 b ⋅ W ⋅ b( ) I − 1

3
bb

 
 
 

 
 
    , (3.2a) 

      
Π^ =

η3
2

b ×W ⋅ I + 3bb( )+ transpose[ ]   , (3.2b) 

      

Π⊥ = −η1 I − bb( )⋅W ⋅ I − bb( )−
1
2

I − bb( ) I − bb( ):W
 
 
 

                                               + 4 I −bb( )⋅ W ⋅ bb + transpose[ ]}   ,
 (3.2c) 

      
W = ∇Vi + ∇Vi

T −
2
3

Ι∇ ⋅ Vi    , (3.2d) 

and 

    
η0 = 0.96

nTi
ν

   , (3.3a) 

    
η1 = 3

10
nTiν

Ω2
   ,  (3.3b) 

    
η3 =

nTi
2Ω

   , (3.3c) 

where ν  is the collision frequency.  Equations (3.2a-d) express the stress tensor in terms 
of gradients of the velocity, and therefore close the system of equations. 

The components of the stress tensor represent fluxes of the three independent vector 
components of the momentum in the three independent spatial directions; e.g.,   Πxy  
represents the flow x-momentum in the y-direction.  Since it is a fundamental law of 
nature that the stress tensor be symmetric, this component also represents the flow of y-
momentum in the x-direction,   Πxy = Π yx.  Conversely (and equivalently), a flow of x-
momentum in the y-direction implies that there must be a corresponding flow of y-
momentum in the x-direction. 

The parallel stress, Equation (3.2a), gives the flux of momentum due to collisions 
between particles moving along the magnetic field, so that the force   ∇ ⋅ Π||  is dissipative.  
This is the viscous force that survives in the absence of a magnetic field; it is just the 
“hydrodynamic” viscous force.  The coefficient   η0 , Equation (3.3a), is inversely 
proportional to the collision frequency.  Therefore, counter to intuition, high collisionality 
implies low collisional viscosity, and vice versa.  As the mean free path λ  between 
collisions increases (ν  decreases) the streaming particles can carry their momentum 
farther before collisional transfer, thus increasing the effective transport of momentum. 

The perpendicular stress, Eq uation (3.2c), gives the flux of momentum due to 
collisions between particles that are constrained to gyrate about the magnetic field.  The 

force ∇⋅ Π⊥ is thus also dissipative.  The coefficient   η1 ~ η0 ν / Ω( )2
 is proportional to 

the collision frequency, so that this component of the viscous stress vanishes in the limit 
of low collisionality.  Physically, the particles are now tied to particular magnetic field 



lines, so that the effective step size for momentum transfer is the Larmor radius (  ~ Ω−1) 

while the mean time between collisions remains   ν −1. 

The cross stress, Equation (3.2b), gives the flux of momentum due to spatial 
gradients in the distribution of particle guiding centers.  As this is strictly a kinematic 
effect, it is independent of collisions, and the force   ∇ ⋅ Π^ is not dissipative even though 
coefficient   η3 given in Equation (3.3c) is formally   ~ η0(ν / Ω).  This coefficient is often 
called the gyro-viscosity.  The corresponding component of the stress tensor is called the 
gyro-viscous stress, denoted by   Πgv, and   ∇ ⋅ Πgv  is the gyro-viscous force. 

The stress tensor can be written in non-dimensional form using the normalization 
given in Section 2.  The result is 

    

Π i0
pi0

∇ ⋅ Πi = ξδ 1
ν /Ω

∇ ⋅ Π || + ∇ ⋅ Πgv + ν
Ω

∇ ⋅ Π⊥
 
  

 
     . (3.4) 

The classical Braginskii expression for the parallel viscous force, which decreases 
with increasing collisionality, is seldom valid in a hot confined plasma such as a 
tokamak.  Instead, this force determined from neo-classical theory21, which provides 
expressions for the parallel force for all collisionality regimes.  This force (in reality, its 
flux surface average) is expressed as19 

      
B ⋅ ∇ ⋅ Πi

nc = mn B2 µi
Vθi
Bθ

eθ    , (3.5) 

where   µi is the neo-classical damping coefficient and   eθ  is a unit vector in the poloidal 
direction.  Introducing the dimensionless variables of Section 2 into this expression, we 
find the normalization 

    

Π0
nc

p0
=

ξ
δ

µ
Ω

   . (3.6) 

The so-called “banana regime” that is of interest in a low collisionality tokamak 

occurs when     ν /Ω << εA
3 / 2 ωb / Ω( )~ εA

3 / 2δ / q , where   ε A  is the inverse aspect ratio of the 

device,   ωb  is the bounce frequency, and   q  is the local safety factor.  It is therefore 

consistent to order   ν /Ω ~ δ2.  In this regime neo-classical theory shows that     µ ~ ε A
1/2ν , 

so that Equation (3.6) becomes 

    

Π0
nc

p0
= ξ

δ
ε A

1 /2 ν
Ω

~ ε A
1/ 2ξδ   . (3.7) 

Despite the previous discussion, it is common in non- linear computational models to 
introduce an isotropic artificial viscosity of the form 

      

Π0
visc

p0
∇ ⋅ Πvisc = −nµ A∇2V    . (3.8) 

This expression resembles the zero field limit of the Braginskii model, and is not valid for 
a highly magnetized plasma.  However, it is relatively simple to implement and is widely 



used nonetheless.  We will consider the artificial viscosity coefficient   µA to be of 
adjustable order in δ , meaning that we can choose its order so that it appears wherever 
we wish in the final equations. 

With these caveats, the non-dimensional viscous force in the banana regime is 

      

Πi0
p0

∇⋅ Πi = −nµA∇2Vi + ξδ ∇⋅ Πi
gv + εA

1/ 2b ⋅ ∇ ⋅ Πi
nc + δ2∇⋅ Π⊥i[ ]   . (3.9) 

The Braginskii expression for the electron viscous force is proportional to the 
electron mass, and is therefore ignored when it appears in concert with the ion stress.  
However, the parallel viscous stress for the electrons will taken to be neo-classical. 

For reference, it is instructive to write down the full momentum balance equation, 
including the viscous stress, without any ordering assumptions.  The result is 

      

ξJ × B −δ∇p = n εξ
∂Vi
∂t

+ ξ2δVi ⋅ ∇Vi
 

 
 

 

 
 

                        + ξδ2 1
ν /Ω

∇ ⋅ Π|| + ∇ ⋅ Π i
gv +

ν
Ω

∇ ⋅ Π⊥
 

 
 

 

 
 

                        + ξ
µ
Ω

b ⋅ ∇ ⋅ Πi
nc − nµA∇2Vi    .

 (3.10) 

The terms on left hand side contain the “equilibrium” forces.  The terms on the right hand 
side are all proportional to the velocity and are the plasma response when the system 
deviates from force balance.  As stated following Equation (3.8), the artificial viscous 
parameter   µA is adjustable with respect to δ  and will be chosen for convenience in the 
later sections. 

Having ordered the stress tensor according to the relative collisionality, we are ready 
to resume the discussion of Section 2. 

4.  The Hall MHD Ordering  

In general, we would like to permit flows of arbitrary speeds and large accelerations, 
as might occur, for example, in shock tubes, fast Z-pinches, fast opening switches, and 
the inner heliosphere.  We are thus led to order the frequency and flow as 

  ε ~ 1   ,        ξ ~ 1/δ    . (4.1) 

With   ν /Ω ~ µ / Ω ~ δ , as is assumed in the Braginskii closure and is valid in the plateau 
collisionality regime, the continuity, ion, and electron equations become 

      

∂n
∂t

= −∇⋅ nVi    , (4.2a) 

      
J × B = n dVi

dt
+ δ ∇ ⋅ Π|| + b ⋅ ∇ ⋅ Π i

nc( )+ 1
n

δ2 ∇p + ∇ ⋅ Π gv( )+ O(δ3 )    ,  (4.2b) 

(where       d / dt = ∂ /∂t + Vi ⋅ ∇) and 

      
E = −Ve × B −

1
n

δ2∇pe    ,  (4.2c) 



along with 

    δJ = ∇ × B    ,  (4.3) 

      

∂B
∂t

= −∇× E    , (4.4) 

and 

      J = n (Vi − Ve )    . (4.5) 

In this ordering,   β = δ /ξ ~ δ2 , so that this model is restricted to very low- β  plasmas.  
From Equation (4.2b), we see that there is force imbalance at     O(1) .  This allows for very 
fast flows and rapid acceleration.  The lowest order correction is from the parallel viscous 

and neo-classical forces.  Pressure and gyro-viscous forces enter at     O(δ2) , as is to be 
expected at this order in β.  In this model the dynamics are dominated by the Lorentz 
force.  The electron velocity is       Ve = Vi − J / n , so that the ions and electrons flow as 
separate fluids, and Ohm’s law must now be written as 

      
E = −Vi × B +

1
n

J × B + O(δ2)    . (4.7) 

Since       J × B ~ O(1) (see Equation (4.2b)), the whistler dynamics enter at lowest order and 
must be retained to describe very fast flows in a very low- β  plasma, thus the term Hall 
MHD 

Ignoring terms that are     O(δ2 ) in the equation of motion results in the force-free 
model that has been commonly used to study the dynamo in reversed- field pinch (RFP) 
plasmas.  In light of Equation (4.7), this model seems to be consistent only if the whistler 
term is retained in Ohm’s law.  Pressure corrections to the ion dynamics formally require 
inclusion of the gyro-viscous stress, and the viscous stress should be considered to 
include neo-classical effects. 

In the banana collisionality regime (    ν /Ωi ~ µ / Ω ~ δ2), Equation (4.2b) becomes 

      
J × B = n dVi

dt
+ ∇ ⋅ Π|| + δb ⋅ ∇ ⋅ Π i

nc + 1
n

δ2 ∇p + ∇ ⋅ Π gv( )+ O(δ4 )    . (4.8) 

The promotion of the parallel viscous stress to     O(1) is unphysical, representing a 
breakdown in the assumptions of the Braginskii model.  It can be replaced by the 
artificial isotropic viscous stress at     O(δ). 

5.  The MHD Ordering  

Supersonic flows rarely occur in a confined plasma, such as a tokamak, so for such 
cases we can restrict the flows to be on the order of the thermal velocity, and require low 
frequencies (compared with the cyclotron frequency).  We thus define the MHD 
ordering2 as 

  ε ~ δ,    ξ ~ 1   . (5.1) 

Then     β ~ O(δ), so that this ordering allows for somewhat higher (although still small) β  
than the fast ordering of Section 4.  The relevant equations are then 



      

∂n
∂t

+ ∇ ⋅ nVi = 0    , (5.2a) 

      
nδ

dVi
dt

= J × B − δ ∇p +
Πi0
p0

∇⋅ Πi
 

 
 

 

 
    , (5.2b) 

      
E = −Ve × B −δ 1

n
∇pe + Πe0

p0
∇ ⋅ Πe

 

 
 

 

 
    , (5.2c) 

      

∂B
∂t

= −∇× E    , (5.2d) 

and 

    J = ∇ × B    ,  (5.2e) 

where       d / dt = ∂ /∂t + Vi ⋅ ∇ .  In the plateau regime the momentum balance equation 
becomes 

      
J × B = δ n dVi

dt
+ ∇p + ∇ ⋅ Π|| + b ⋅ ∇ ⋅ Π i

nc 
 
 

 
 
 + δ2∇ ⋅ Π i

gv + O(δ4 )    . (5.3a) 

Deviations from a force- free (    J × B = 0) state now only appear at     O(δ) .  Both the 
Braginskii and neo-classical viscous stresses appear formally at this order.  The electron 
equation is 

      E = −Ve × B + O(δ )    .  (5.3b) 

We will ignore terms that are     O(δ2)  in the equation of motion, and terms that are     O(δ) 
in Ohm’s law. 

Using Equation (2.6a), the ion velocity is 

      Vi = V||i + VE + O(δ)    . (5.4a) 

Consistent with Equation (5.1), we ignore the terms in the ion velocity that are     O(δ).  
Then the electron velocity is 

      
Ve = Vi −

1
n

J    . (5.4b) 

Thus in MHD the electrons and ions flow as separate fluids, with the differences in their 
parallel and perpendicular velocities contained in the current density   J . The generalized 
Ohm’s law is then 

        
E = −Vi × B+

1
n

J × B
O(δ )
1 2 3 −δ

1
n

∇pe    . (5.5) 

However, from Equations (5.2e) and (5.3a), the second term on the right had side is     O(δ) 
and can be ignored.  Thus the MHD Ohm’s law becomes 

      E = −Vi × B    .  (5.6) 



The lack of whistler and diamagnetic terms in the MHD model comes about from the 
force balance requirement       J× B ~ O(δ), and not because the ions and electrons flow as a 
“single” fluid. 

In the banana regime, Equation (5.3a) is 

      
J ×B = ∇⋅ Π|| + δ n

dVi
dt

+ ∇p + b ⋅ ∇ ⋅ Πi
nc 

 
 

 
 
    . (5.7) 

Again, the promotion of the Braginskii parallel viscous stress by one order in δ  
represents a breakdown in the model. 

6.  The Drift Ordering 

A consequence of the MHD ordering, Equation (5.1), is that force imbalance (in this 
case, deviation from a force-free state) can occur at first order in δ .  In the drift ordering 
we envision a situation in which the equilibrium pressure and Lorentz forces are of the 
same order and remain in almost perfect balance for all times.  Motions away from this 
state will be slow and exceedingly low frequency.  This leads to the choice 

  ε ~ δ2 ,    ξ ~ δ    . (6.1) 

This allows     β ~ O(1).  Then the form of the continuity equation remains unchanged from 
the MHD model, Equation (5.2a), while the expressions of total and electron momentum 
in the banana regime become 

      
−∇p + J × B = δ2 n

dVi
dt

+ ∇⋅ Πi
gv + b ⋅ ∇ ⋅ Πi

nc − nµA∇2Vi
 
 
 

 
 
 + O(δ4)    , (6.2a) 

and 

      
E = −Ve × B −

1
n

∇pe    . (6.2b) 

Here we have ordered the artificial viscosity as     µA ~ δ2  so that it appears at the same 
order as the acceleration in Equation (6.2a).  As anticipated, the pressure and Lorentz 

forces are now comparable and deviations from force balance occur at     O(δ2).  Note that 
the neo-classical ion parallel viscous force enters at the same order as the gyro-viscous 
stress. 

Ampere’s law is now 

    J =δ∇ ×B   . (6.3) 

The ion velocity in the drift ordering is 

      Vi = VE + V*i + Vπi + V||i + O(δ2 )    , (6.4a) 

where 

      
V*i = 1

nB2
B× ∇pi    ,  (6.4b) 

and 



      
Vπi = 1

nB2
B× ∇ ⋅ Π i

gv    ,  (6.4c) 

are the ion diamagnetic and “stress” drift velocities, respectively.  The electron velocity is 

      
Ve = Vi −

1
n

J    . (6.4d) 

The appearance of the gyro-viscous stress in ion momentum equation is consequence of 
the FLR corrections.  Note that the gyro-viscous force appears at the same order as the 
advective acceleration.  In the drift ordering it is inconsistent to retain   V ⋅ ∇V  while 
ignoring   ∇ ⋅ Π gv . 

7.  The Transport Model 

The transport model is a special case of the drift ordering that retains only the terms 
that are lowest order δ .  The result is 

      

∂n
∂t

= −∇⋅ nVi     , (7.1a) 

      ∇p = J × B    ,  (7.1b) 

      
E = −Vi × B +

1
n

∇⊥ pi    , (7.1c) 

and 

      
∂B
∂t

= −∇ × E    . (7.1d) 

Inertia has been ordered out of the system, and with it all waves.  In an axisymmetric 
equilibrium the flow will be only perpend icular to the flux surfaces.  Equation (7.1b) 
becomes the Grad-Shafranov equation, while, from (7.1c), the outward flux of particles is 

      nV⊥i = n (VE + V*i )    . (7.2) 

When this expression is used with an equation of state, such as   p = nT , Equation (7.1a) 
takes the form of a diffusion equation for the density.  Field diffusion results from (7.1d) 
if the friction force (resistivity) is retained in the electron equation (7.1c). 

8.  The Standard Drift Model 

While the drift ordering introduced in Section 6 produced the lowest order FLR 
corrections to the fluid equations, it resulted in more complicated equations than in the 
MHD ordering and provided no special insights.  In contrast to the drift ordering, the 
drift model makes use of the velocity decomposition given by Equations (6.4a-d), along 
with a remarkable result called the gyro-viscous cancellation, to produce a simplified set 
of equations that yield significant physical insight. 

Essentially, the standard drift model makes a velocity transformation to a frame 
moving with the MHD velocity     VE: 

      Vi = V|| i + VE + V*i + O(δ2 )    , (8.1a) 



      
Ve = Vi −

1
n

J = V||i + VE + V*i −
1
n

J + O(δ2 )    . (8.1b) 

The motivation is to arrive at a set of equations that look like the MHD equations with 
corrections.  Using this last result in the electron equation, Equation (6.2b), we have 

      
E = − VE + V*i −

1
n

J⊥
 
 
 

 
 
 × B −

1
n

∇pe + O(δ2 )    , 

        

  = −VE × B −
1
n

∇|| pe +
1
n

−∇⊥ p + J × B( )
O(δ2 )

1 2 4 4 3 4 4 + O(δ2)    , 

      
  = −VE × B −

1
n

∇|| pe    .  (8.2) 

This is the generalized Ohm’s law in the drift model.  Notice that the high frequency 

whistler response, which comes from   J ×B , has been dropped as a higher order (    O(δ2 )) 
correction.  (A similar argument led to the elimination of whistler waves from the MHD 
model; see Section 5.)  This is consistent with the low frequency ordering   ω ~ δ2Ω; the 
whistler branch merges with the Alfvén branch at low frequency.  The ion equation 
becomes 

      

δ2 n d
dt

V||i + VE( )+ n dV*i
dt

+ ∇ ⋅ Π i
gv Vi( )

 
 
 

 
 
 = −∇p + J × B −δ2b ⋅ ∇ ⋅ Π i

nc

                                                                        +δ2nµA∇2Vi + O(δ4 )    ,

 (8.3) 

where we have retained the notation       d / dt = ∂ /∂t + Vi ⋅ ∇ . 

One reason for the utility of the drift model is an enormous simplification of the 
equation of motion that occurs because, in the proper reference frame, the parallel ion 
gyro-viscous force   ∇ ⋅ Πgv  algebraically cancels a significant part of the advective 
acceleration     nVi ⋅ ∇Vi .  The remaining terms primarily introduce a slight modification to 
the total pressure. 

The gyro-viscous cancellation is usually written as14 

      
n

∂V*i
∂t

+ Vi ⋅ ∇V*i
 
 
 

 
 
 + ∇ ⋅ Πi

gv Vi( )≈ ∇χ − bnV*i ⋅ ∇V||i    , (8.4) 

where  

    χ = − pib ⋅ ∇ × V⊥i( ) (8.5) 

is a scalar related to the parallel component of the ion vorticity.  Both terms involved in 
the cancellation result from the transport by advection at the streaming velocity (    Vi) of 
momentum inherent in the gyro-motion (      V*i).  These fluxes almost cancel because the  
diamagnetic drift does not correspond to any real drift of the guiding centers22.  Both the 
gyro-viscous force and the advective term       V*i ⋅ ∇Vi explicitly contain the pressure, the 



velocity, and two gradients, so one can surmise (at least ma thematically) how this 
cancellation might come about.14  Since, from Equations (3.2b) and (3.2d), 

      

∇⋅ Πi
gv ~ ∇ ⋅ p b × ∇Vi( )[ ]   ,

            ~ ∇p ⋅ b × ∇( )Vi    ,

            = − b × ∇p( )⋅ ∇Vi    ,

            ~ −nV*i ⋅ ∇Vi    ,

 (8.6) 

it is at least plausible that such a cancellation might take place.  However, the actual 
calculation is extremely complex and tedious6,8,14, and seems to have been carried out 
only under restricted conditions (i.e., uniform magnetic field, sheared slab geometry, 
uniform temperature, etc.).  Further, there is not universal agreement on the exact form of 
the cancellation.  Some authors6,8 find extra terms on the right hand side of Equation 
(8.4). 

The gyro-viscous cancellation cannot occur in either Hall or ideal MHD, since the 
advective acceleration and the gyro-viscous force enter at different orders in each of 
those models. 

Using the gyro-viscous cancellation, Equation (8.4), in the momentum equation, 
Equation (8.3), and assuming that the magnetic field is approximately constant (so that 
the unit vector   b  can be moved freely through derivative operators), we find 

      

nδ2 ∂VE
∂t

+ VE ⋅ ∇VE
 

 
 

 

 
 +

∂V||i

∂t
+ VE ⋅ ∇V|| i

 

 
 

 

 
 

 

 
 

                    +V*i ⋅ ∇VE + V||i ⋅ ∇ VE + V||i( )]= −∇ p 1+ δ2χ( )[ ]+ J × B

                                                 −δ2b ⋅ ∇ ⋅ Πi
nc + δ2nµA∇2Vi + O(δ4)    .

 (8.7) 

This is usually expressed in terms of  the perpendicular and parallel momentum balance: 

      

nδ2 dVE
dt MHD

= −δ2nV*i ⋅ ∇VE −δ2nV||i ⋅ ∇VE + δ2nµA∇2VE

                              − δ2 (I − bb) ⋅ (b ⋅ ∇ ⋅ Πi
nc )  − ∇⊥ p 1+ δ2χ( )[ ]+ J × B    ,

(8.8a) 

      

nδ2 dV||i

dt MHD
= −δ2nV||i ⋅ ∇V||i + δ2nµA∇2V||i

                                      − δ2b ⋅ (b ⋅ ∇ ⋅ Π i
nc) − b ⋅ ∇ p 1+ δ2χ( )[ ]   ,

 (8.8b) 

where  

      

d
dt MHD

≡
∂
∂t

+ VE ⋅ ∇    .  (8.9) 



These equations differ from the MHD model primarily through a modification to the 
scalar pressure and the appearance of a source term proportional to       V*i .  This last term 
explicitly introduces the diamagnetic drift frequency (      ω*i ~ V*i ⋅ ∇). 

The drift model thus naturally produces a set of equations that a) explicitly contain 
the lowest order FLR corrections to the MHD model, b) look very much like the MHD 
equations when cast in terms of the velocity       V = VE + V|| i, c) separate easily into 
perpendicular and parallel parts, d) remove most of the complications of the gyro-viscous 
stress (see Equation (3.2b)), and, e) eliminate the whistler branch.  It is no wonder that 
these equations have proven to be powerful for the analysis of hot, confined plasmas. 

There are, however, some caveats in the drift model.  In the first place, the derivation 
formally admits only slow flows, which is consistent with the result of force balance 
through first order in δ .  Since this ordering refers to the total ion velocity     Vi (see 
Equations (6.1) and (6.2a)), it is applicable both the MHD velocity     VE  and the drift 
velocity       V*i .  (A relaxation of this restriction will be discussed in Section 11.)  Second, 
the assumption of  very low frequency may limit the validity of  the model to time scales 
much longer than the Alfvén transit time     L /VA .  Acceptable frequencies are on the order 
of the diamagnetic drift frequency     ω*i ~ V*i / L << ω A.  Third, the form of the gyro-
viscous cancellation used here assumes a uniform magnetic field, or at least a sheared 
slab.  There is no generally accepted form that is much less restrictive.  Therefore, the 
specific form of the equations should be considered only approximate.  Finally, the 
artificial viscosity in the momentum equation is unphysical.  In non-linear numerical 
simulations it may be required to be so large as to obscure the delicate cancellations that 
have occurred. 

The continuity equation must also be modified by the velocity transformation.  The 
drift model is then summarized as: 

continuity: 

      

∂n
∂t

+ ∇ ⋅ nVE = −∇⋅ n V*i + V||i( )    , (8.10a) 

perpendicular momentum: 

      

nδ2 dVE
dt MHD

= −δ2nV*i ⋅ ∇VE −δ2nV|| i ⋅ ∇VE + δ2nµ A∇2V

                        − δ2 (I − bb) ⋅ (b ⋅ ∇ ⋅ Π i
nc )  − ∇⊥ p 1+ δ2χ( )[ ]+ J × B    ,

 (8.10b) 

parallel momentum : 

      

nδ2 dV||i

dt MHD
= −δ2nV||i ⋅ ∇V||i + δ2nµA∇2V||i

                                      − δ2b ⋅ (b ⋅ ∇ ⋅ Π i
nc) − b ⋅ ∇ p 1+ δ2χ( )[ ]   ,

 (8.10c) 

generalized Ohm’s law: 



      
E = −VE × B −

1
n

∇|| pe    ,  (8.10d) 

Faraday’s law : 

      
∂B
∂t

= −∇ × E    ,  (8.10e) 

Ampere’s law: 

    J =δ∇ ×B   . (8.10f) 

Of course, these must be supplemented by an appropriate drift-ordered energy equation to 
determine the scalar pressure. 

9.  A Generalized Drift Model 

A generalized drift model has recently been introduced17, which attempts to some of 
the restrictions of the standard drift model.  This model retains the drift ordering of 
Equation (6.1), but introduces the more general velocity transformation 

      Vi = VE + Vdi + V||i    , (9.1) 

where the generalized drift velocity     Vdi contains corrections to the perpendicular ion 
velocity to all orders in δ .  The electron velocity can be written in two independent ways: 
from Equations (6.4d) and (9.2); 

      
Ve = Vi −

1
n

J    , 

      
    = V||i −

1
n

J || + VE + Vdi −
1
n

J⊥    , (9.2a) 

and from Equation (6.2b); 

      Ve = V||e + VE + V*e    , (9.2b) 

where 

      
V*e = −

1

nB2
B × ∇pe    . (9.3) 

From Equations (9.2a,b), we conclude that 

      
V||e = V||i − 1

n
J||    , (9.4) 

and 

      
Vdi =

1
n

J⊥ + V*e    .  (9.5) 

Note that, from Equation (6.2a), 

      Vdi = V*i + O(δ2)    . (9.6) 

This is a result of the drift ordering, i.e., force balance to second order in δ . 



Using this ansatz in the generalized Ohm’s law, Equation (6.2b), we find again 
Equation (8.10d), except it is now exact to all orders of δ.  In light of Equation (9.6), we 
also can replace       V*i  with     Vdi everywhere in Equations (8.10a-c).  This becomes the 
generalized drift model.  

The advantage of this model is that the electron dynamics become exact (within the 
context of     me = 0).  In principle, the whistler branch should then reappear in the ion 

dynamics, but it is aga in removed by the drift ordering.  It appears at     O(δ4)  and is 

dropped.  The entire model remains accurate to     O(δ2 ).  It seems that rapid flows and 
relatively high frequencies remain disallowed by the fundamental ordering. 

10.  Dispersive Modes in the Drift Model 

The finite Larmor radius effects of the drift model introduce modifications to the 
normal modes of the usual MHD equations.  The FLR corrections to the electromagnetic 
Alfvén wave are especially interesting and troublesome because they introduce high 

frequency dispersive modes with     ω ~ k 2.  The corresponding Courant condition 

    ∆t < ∆x2  is too restrictive for long time scale computations using explicit methods, and 
the non-Hermitian property of the wave operators dictates that implicit methods use non-
symmetric linear algebra solvers. 

To examine these waves, it is instructive to consider the generalized Ohm’s law 

without assuming force balance to     O(δ2 ).  From the derivation preceding Equation (8.2), 

      
E = −V × B −

1
ne

∇ || pe +
1
ne

−∇⊥ p + J × B[ ]   . (10.1) 

(Here, and for the remainder of this section, we revert to dimensional equations.)  Recall 
that the term in brackets on the right hand side of Equation (10.1) is ordered out of the 
drift model (see Equation (8.2)).  The first term on the right hand side yields the usual 
MHD Alfvén waves.  The remaining terms are FLR corrections.  The second term 
(    ~ ∇|| pe ) is introduces kinetic Alfvén waves (KAW), and the last term (    ~ J × B ) 
introduces whistler waves.  The third term (    ~ ∇⊥ p) yields no new modes in an 
incompressible plasma. 

In a uniform, homogenous plasma with straight field lines, the linearized whistler 
wave equation comes about from combining Equation (10.1) with Faraday’s law and 
Ampere’s law, 

      

∂B
∂t

= − B0
ne

b ⋅ ∇( )J = − B0
neµ0

b ⋅ ∇( )∇ × B    ,  

      

∂2B

∂t 2
= − B0

neµ0
∇ × ∂B

∂t
   ,  

      
      =

VA
2

Ω

 

 
  

 

 
  

2

b ⋅ ∇( )2∇ × ∇ × B    . (10.2) 



These waves have the dispersion relation 

    
ω2 =

VA
2

Ω

 

 
  

 

 
  

2

k 2k||
2    , (10.3) 

so that shorter wavelengths have higher frequencies.  This is the source of the 
computational problem.  The semi- implicit operator that stabilizes the whistler waves18 is 
based on Equation (10.2). 

Under similar conditions, but assuming overall incompressibility, i.e., 

      ∇ ⋅ V ≡ ∇ ⋅ VE + V||i( )= 0    ,  (10.4) 

the KAW arises from a combination of the second term in Equation (10.3), Faraday’s 
law, Ampere’s law, the perpendicular momentum equation, and the electron energy 
equation 

      

∂pe
∂t

= −γpe0∇⋅ Ve    . (10.5) 

Note that Equation (10.4) does not imply that the electrons are themselves 
incompressible.  In fact 

      
∇ ⋅ Ve = ∇⋅ Vi −

1
ne

J⊥
 
 
 

 
 
 −

1
ne

∇ ⋅ J||    . (10.6) 

Now       J⊥ = ne(V*i − V*e ) , so that, using Equations (8.1a,b), we have 

      
∇⋅ Ve = ∇⋅ VE + V||i( )+ ∇⋅ V*e −

1
ne

∇⋅ J||    , 

      
          = − 1

ne
∇ ⋅ J ||    ,  (10.7) 

since     ∇ ⋅ V*α = 0 .  Then Equation (10.5) becomes 

      

∂pe
∂t

=
γpe0
ne

∇⋅ J||    .  (10.8) 

Putting all this together, we find the KAW wave equation to be 

      

∂2B

∂t2
=

VAVth*
Ω

 

 
 

 

 
 
2

b ⋅ ∇( )2∇ × bb ⋅ ∇ × B[ ]   , (10.9) 

where     Vth* is the thermal speed evaluated with the electron temperature and the ion mass.  
The KAW dispersion relation is  

    
ω2 =

VAVth*
Ω

 
 
 

 
 
 
2

k⊥
2k||

2    . (10.10) 

It can be shown that the KAW survives the assumption of overall incompressibility 
and remains dispersive23. 



Whistler waves come from a combination of the generalized Ohm’s law and 
Faraday’s law.  They are completely related to the electrons.  The KAW involves both 
electron and ion dynamics, and their frequency is low enough to be captured in the drift 
ordering.  Nonetheless, the similarity between the whistler wave equation (Equation 
(10.2)) and the KAW wave equation (Equation (10.9)) strongly suggests that the same 
semi- implicit operator that has been developed for treating the whistler waves18,24 may 
also be successful in stabilizing the KAW.  (The difference is that whistler equation 
involves the curl of the total current density, while the KAW involves the curl of the 
parallel current density.)  This is for now a matter of speculation, but even if a separate 
operator based on Equation (10.9) is required, it will only be a small modification of the 
existing whistler operator24. 

11.  Fast Flows and Very Low Frequencies 

The drift ordering only admits flows that are     O(δVthi) .  This restriction can be 
effectively removed by explicitly writing the ion velocity as 

      Vi = Vthi ξEVE + ξ*V*i + ξ||iV|| i( )   .  (11.1) 

Allowing for fast flows and low frequencies, we set     ξE ~ ξ|| ~ 1,   ξ* ~ δ , and   ε ~ δ2 .  
Then the equation of motion (including the gyro-viscous cancellation) and Ohm’s law 
become 

      
n δ2 ∂V

∂t
+ δV ⋅ ∇V

 
 
 

 
 
 = −δ2nV*i ⋅ ∇V⊥ − δ∇ p + δχ( )+ J × B    , (11.2a) 

and 

      
E = −V × B −δ

1
n

∇ || pe    , (11.2b) 

where       V = VE + V|| i.  Except for the relative ordering of the individual terms, these 
equations have the same form as in the drift model, Equations (8.10b-d), and have the 
same overall accuracy.  Thus equations of this form allow fast flows.  The relevant 
restriction is now       Vi − VE ~ O(δ ). 

12.  Discussion 

The role of small parameters in two- fluid modeling has been emphasized by writing 
the fluid equations for the ion and electron species (with     me = 0) in non-dimensional 
form.  The parameters are     ε =ω /Ω i,     ξ = V0 /Vthi,     δ = Vthi / ΩiL = ρi / L , and     ν /Ω i.  In 
terms of these parameters the normalized plasma pressure is not arbitrary, but is given by 

  β = δ /ξ .  For a highly magnetized plasma   δ << 1, and important physical effects can be 
highlighted by the relative ordering of the remaining parameters with respect to δ.  In all 
cases the electrons and ions flow as separate fluids. 

Properties of the various models is summarized in Table I. 

Hall MHD appears in the ordering   ξ ~ 1/δ  and   ε ~ 1, and applies to very low-β  

plasmas,   β ~ δ2 (see Section 3).  In this ordering the consistent Ohm’s law contains the 
whistler (Hall) terms, but ignores the diamagnetic contributions.  Unbalanced forces 



appear at     O(1), so this model is appropriate for describing situations that are far from 
equilibrium, such as fast Z-pinches, gun plasma formation, and coronal mass ejections. 

Table I 

Properties of Fluid Models 

Model   Vi ω  β    J ×B  Whistlers† KAW†† 

Hall 
MHD 

    Vthi /δ    Ωci     O(δ2 ) 
      
mn

dVi
dt

+ O(δ)  
Yes No 

Ideal 
MHD 

  Vthi   δΩci     O(δ)     O(δ) No No 

Drift   δVthi     δ
2Ωci     O(1) 

    ∇p + O(δ2) No Yes 
†Whistler waves are high frequency phenomena that disappear as the frequency is ordered successively 
lower. 
††Kinetic Alfvén waves are finite pressure phenomena that appear as β  becomes successively larger. 
 

MHD appears in the ordering   ξ ~ 1 and   ε ~ δ  (see Section 4). MHD admits the 
possibility of fast flows (    V0 ~ Vthi), but restricts the frequency to be low (    ω ~ δΩi).  It is 
applicable when   β ~ δ .  Unbalanced forces can appear at     O(δ), so MHD is appropriate 
for describing situations that deviate moderately equilibrium, such as spheromaks, RFPs, 

and possibly sawtooth crashes.  FLR effects appear at     O(δ2 ) and are ignored in this 
model. 

In MHD, the parallel Braginskii viscous force is divergent when     ν /Ωi < O(δ).  This 
is the regime is of interest in modern tokamaks.  Therefore, the viscous forces do not 

formally appear in the MHD model.  However, a force of the form       nmµ∇2V  is often 
used for numerical purposes.  This force is non-physical.  In fact, it does not vanish under 
rigid rotations as is required of the actual viscous force.  (A more correct form would be 

      ∇ ⋅ (∇V + ∇VT ).) 

The drift ordering (see Section 6) is restricted to slow flows (    V0 ~ δVthi) and very 

low frequencies (    ω ~ δ2Ωi).  It is applicable to situations where     β ~ O(1).  Unbalanced 

forces appear only at     O(δ2 ) (see Equations 6.2a,b).  This model is appropriate for 
systems that deviate only slightly and slowly from equilibrium, such as a hot plasma 
confined in a tokamak.  (It reflects favorably on the progress in tokamak confinement that 
such a model is required to accurately describe the dynamics.)  If all FLR corrections are 
ignored this ordering produces the transport model, in which all inertial effects are 
removed and the slow motions across the field are diffusive in nature (see Equations (7.1-

2)).  Retaining lowest order corrections (    O(δ2 ) in the ion dynamics and     O(δ) in the 
electron dynamics) yields dynamical equations that describe the ions and electrons as 
separate fluids. 

In the drift ordering the gyro-viscous force appears at the same order as the 
acceleration, and must be retained in the model2.  The neo-classical parallel viscous force 



also enters at the same order, and should be retained.  An isotropic “collisional” viscosity 
is also included.  The same remarks apply here as in the case of MHD. 

The power of the drift ordering is evident when the velocity is decomposed into 
parallel,   E × B  drift, and diamagnetic drift components.  With the aid of the gyro-viscous 
cancellation (see Equation (8.4-5)), the ion and electron equations can be put into a form 
that looks like the MHD equations with only slight corrections (see Equations (8.10a- f)).  
The major correction to the ion equation is a term of the form       nmV*i ⋅ ∇V , which 
introduces the ion diamagnetic drift frequency.  The major correction to the electrons is 
the elimination due to high order force balance of the whistler branch (which comes from 
the Hall term   J ×B ).  The frequency of the whistler waves is too high to be captured in 
the drift ordering.  However, the remaining term,     − ∇|| pe / n , introduces kinetic Alfvén 

waves (see Section 10), which, like the whistlers, are dispersive (    ω2 ~ k 4). 

A generalized drift ordering has been presented17 in which the Ohms law is exact to 
all orders in δ , and the perpendicular velocity contains the polarization drift as well as the 
diamagnetic and   E × B  drifts.  This model also eliminates the whistler branch, but still 
allows dispersive kinetic Alfvén waves. 

While the drift ordering (as well as the generalized drift ordering17) formally requires 

small flows, it is possible to introduce an ordering   ξ ~ 1,   ε ~ δ2  that allows fast flows but 
retains the form of the drift equations.  The only difference is the relative size of the 
various terms in the model.  Thus the form of the drift model equations can also 
accommodate fast flows (    V0 ~ Vthi). 

A goal of two-fluid modeling is to produce a set of equations that contains the 
essential corrections to MHD (such as the ion drifts) while eliminating any high 
frequency parasitic waves (such as whistlers and kinetic Alfvén waves) that are not 
essential for the physics but must be dealt with in a numerical algorithm.  While we have 
succeeded in eliminating analytically the fastest of these (the whistler branch), the 
slightly lower frequency KAW remains.  Their dispersion relation makes them 
unacceptable for explicit time advancement and requires implicit (or semi- implicit) 
methods.  Options for dealing with these modes are discussed below. 

One option is to retain the full two- fluid Ohm’s law, 

      
E = −V × B +

1
ne

−∇pe + J × B( )   , (12.1) 

and treat the Hall term with a well-known semi-implicit operator18,23 .  Work in this regard 
is underway23.  As speculated in Section 10, it seems likely that this operator may also 
stabilize the KAW, but this remains to be demonstrated.  (In this case it is only consistent 
to use       V*i  instead of     Vdi in the equation of motion.) 

A second option is to use the Ohm’s law of the generalized drift model, 

      
E = −V × B − 1

ne
∇ || pe    ,  (12.2) 



where     V = Vi − Vdi and 
      
Vdi = 1

ne
J⊥ + V*e , and use a semi-implicit advance based on 

Equation (10.9) to stabilize the KAW branch.  This seems to be more accurate (exact 
Ohm’s law and all ion drifts) than the approach based on Equation (12.1), while requiring 
no significant extra computational effort (the new semi- implicit term is just a slight 
modification of the Hall semi- implicit operator). 

In any case, the FLR corrections to the ion dynamics are captured by the drift 
modification to the equation of motion, i.e., 

        

nm ∂V
∂t

+ V ⋅ ∇V
 

 
 

 

 
 = −∇p + J × B + nmµ∇2V − b ⋅ ∇ ⋅ Π i

nc

                                          −nmVdi ⋅ ∇V⊥ − ∇χ

FLR  corrections
1 2 4 4 4 3 4 4 4    ,

 (12.3) 

where       χ = −( p / 2Ω)b ⋅ ∇ × V⊥  appears as a correction to the pressure.  The extra 
advective term can be readily included in a predictor-corrector algorithm. 

We note that a third option would be to use the full Ohm’s law, Equation (12.1), and 
retain the full gyro-viscous stress (Equation (3.2b)) in the momentum equation (i.e., 
perform the gyro-viscous cancellation numerically).  This approach is appropriate for 
dealing with more general situations that may significantly depart from equilibrium (and 
where the assumptions involved in the gyro-viscous cancellation do not apply).  
However, the drift model is well adapted to the special case of tokamak dynamics and is 
recommended for those applications. 

The equations to be implemented in any model will be written in dimensional form.  
The relative ordering introduced in Section 2 will now appear as relative sizes of the 
dependent variables. 

From the beginning we have neglected the friction force in the equations of motion. 
The primary effect is to modify Ohm’s law to be17 

      
E = ηJ* − V × B − 1

ne
∇ || pe    , (12.4) 

where η is the resistivity and  

      
J* = J −

3
2

n

B2
B × ∇Te    . (12.5) 

The MHD velocity then becomes       VE = (E −ηJ*)× B / B2 .  This can be implemented with 
little extra effort. 

The proposed two- fluid computational model thus consists of (12.2-5), along with 
the modified continuity equation (Equation (8.10a)), Ampere’s law and Faraday’s law, 
and a semi- implicit operator based on Equation (10.9).  Appropriate forms of the energy 
equations  for   pe  and   pi must also be derived.  We remark as before that the specific 
form of the equations depends on assumptions (such as the gyro-viscous cancellation in a 
sheared slab magnetic field) that are only approximate in toroidal geometry.  However, 
such uncertainties in the details of the formulation may be masked by the presence of the 



isotropic artificial viscosity that is introduced for numerical purposes.  Further, the model 
has the virtues that both the ion drifts and Ohm’s law are exact to all orders of δ , that the 
modifications to the momentum equation are simple and their physical meaning is clear, 
and that the semi-implicit operator is only a slight modification of one that is presently 
being implemented24. 
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