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This is a report outlining the formulation of the resistive wall boundary condition 
that is suitable for a finite element code such as NIMROD.  Because NIMROD plans to 
use a vacuum potential code (VACUUM) to obtain information of the magnetic field 
beyond the resistive wall boundary, the emphasis is on the Greene’s function solution of 
the vacuum potential and the special care needed for the n=0 case.  In brief, the resistive 
wall boundary condition is derived from the jump conditions that connect the magnetic 
fields in the vacuum and in the plasma across the resistive wall, along with Ohm’s law 
and the thin wall approximation.  The result is an expression for the tangential electric 
field at the wall in terms of the plasma fields at the wall and two constant fields that must 
be supplied from other information.  These axisymmetric constant fields are related to the 
total currents in the plasma/resistive wall system and are critical for nonlinear 
simulations.  The tangential electric field can then be used as a boundary condition 
directly in the NIMROD formulation to advance the induction equation in time. 

This note builds on the significant work of others.  The mathematical underpinnings 
of the vacuum solution in general toroidal geometry have been given in the pioneering 
paper by Lüst and Martensen1 (with an unpublished English translation by Dewar2).  This 
solution has been implemented numerically in the VACUUM code, described in an 
elegant paper by Chance3.  The VACUUM code calculates the “vacuum response matrix” 
that depends only on geometry and provides the coupling between the vacuum magnetic 
fields and the fields within the plasma domain.  Since the VACUUM code was originally 
designed to interface with linear stability codes that consider only individual modes, it 
does not provide the secular (non-single valued) part of the vacuum response that is 
responsible for the two constant fields discussed above.  Gianakon4 has implemented a 
coupling between NIMROD and the VACUUM code.  While this successfully addresses 
the problem of the complex coupling between the poloidal decomposition assumed by the 
VACUUM code and the finite-element representation used in NIMROD, the formulation 
of the resistive wall boundary condition follows that of Bondeson and Ward5 and is not 
easily assimilated into the general NIMROD boundary condition algorithm, nor does it 
contain the secular part of the response required for a complete description of the 
problems of interest.  Pletzer6 outlined more satisfactory formulation of the resistive wall 
boundary condition, but that used a different formulation of the induction equation in 
NIMROD, was never implemented, and contains some errors regarding the secular terms.   

Here a formulation is developed that is both general and consistent with the 
NIMROD boundary condition implementation.  In the first section, the “natural boundary 
conditions” for the induction equation in a finite-element discretization are outlined.  In 
the second section, the resistive wall boundary conditions using the thin-shell 
approximation are presented and related to the boundary conditions in the first section.  
Because these conditions require the solution of the vacuum, the Greene’s function 



method is also reviewed in this section.  The third section focuses exclusively on the 
importance of the secular terms, and the mathematical formalism needed for the 
axisymmetric toroidal case.  After concluding, we discuss the effects of the non-
solenoidal representation of the magnetic field in NIMROD in Appendix A, and give a 
concrete example of the resistive wall formalism in Appendix B.  

 

1.  BOUNDARY CONDITIONS AND THE FINITE ELEMENT METHOD  

The NIMROD code uses the finite element method (FEM) for spatial discretization.  
We seek a formulation of the resistive wall boundary condition in axially symmetric 
geometry that is consistent with this implementation.  The induction equation is 
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where B is the magnetic field and E is the electric field.  In the finite-element method the 
dependent variables are expanded in a set of basis functions     αq (x) .  Here, the subscript q 
stands in place of the multiple indices that describe the mesh.  The resulting equations are 
then multiplied by another member of the set,     α p(x) , and integrated over all space to 
obtain the so-called weak form of the equations.  Applying this ansatz to Equation (1), 
we have 
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where   n is the outward drawn normal to the bounding surface S, and we have integrated 
by parts.  This can be written symbolically as 
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where       M p,q are the elements of the mass matrix,   E p is the source of inductance, and   Sp is 
a boundary term representing the last integral on the right hand side of Equation (2).  The 
boundary conditions enter through this term.  Neglecting the surface term results in a 
solution that is consistent with zero tangential electric field (constant loop voltage); thus, 
perfectly conducting boundary conditions are the natural conditions for this problem.  
Other boundary conditions, such as those of a resistive wall, should be cast in this form to 
be consistent with the internal structure of the NIMROD algorithm. That is, other 
boundary should specify an appropriate tangential electric field, by which a surface 
integral can be taken. Note that due to the non-solenoidal nature of the magnetic field in 
the finite-element representation, NIMROD actually solves an equation with additional 
terms that change the equation from first-order to second-order.  The full implications of 
this are discussed in Appendix A. 

 



2.  RESISTIVE WALL BOUNDARY CONDITION AND VACUUM RESPONSE 

The boundary conditions at a resistive wall are determined by matching the internal 
solution (called the plasma solution) to the external solution (called the vacuum solution) 
using the well-known jump conditions on the magnetic field. (See Figure 1.)  By using a 
thin wall approximation for the resistive wall and the method of Green’s functions to 
obtain the vacuum response, the tangential electric field at the wall can be expressed 
completely in terms the internal (or plasma) magnetic field at the wall and the material 
properties (resistivity and thickness) of the wall.  Equation (3) then allows the internal 
magnetic field at the wall to be advanced in time.  In general, this expression will couple 
all points on the boundary so that an explicit advance of this equation is preferred.  This 
should be satisfactory as long as the time step is significantly smaller than the wall time 
constant. 

 
Figure 1.  The NIMROD computational domain with a resistive wall boundary condition requires a 
vacuum solution for the region beyond the resistive wall.  This solution is provide either analytically 
(for slab and cylindrical geometry) or computationally (VACUUM code for toroidal geometry). 

The conditions satisfied by magnetic field across any surface are 

[ ] ,   0KBn µ=×  (4a) 

    n ⋅ B[ ]= 0    , (4b) 

where K is the surface current flowing in the interface, and the brackets [...] represent the 
difference between quantities on either side of the interface.  For our case, n is the 
outward drawn normal to the computational domain, and  

    f[ ]= fv − f p    , (5) 

is the difference between vacuum (external) and plasma (internal) quantities. 

In the thin shell approximation, the surface current Kw in the wall is related to the 
current density by Kw = δwJw, where δw is the wall thickness.  Ohm’s law relates Jw to 



the wall resistivity η w and the tangential electric field.  Equation (4a) then yields an 
expression for the tangential electric field at the wall: 
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The formulation will be complete once we have independently expressed Bv in terms of 
Bp.  This will be done by writing the vacuum field as .secBB +∇= χv  where χ  is the 
magnetic scalar potential (since 0=×∇ vB ), and secB  is the secular magnetic field. The 
necessity of the secular magnetic field comes from considering the calculation of the 
toroidal current contained within the resistive wall and plasma: 
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If the secular, or non-periodic, terms are need if the resistive wall contains plasma 
current.  In a nonlinear simulation, total currents will be set to zero by the boundary 
condition if it is not taken into account. 

To complete the boundary condition, we need the solution of the magnetic vacuum 
field in the region beyond the resistive wall.  We first consider the magnetic scalar 
potential.  Since 0=⋅∇ vB , the vacuum potential χ  satisfies Laplace’s equation in the 
external region 

02 =∇ χ  (8) 

subject to the boundary condition given by Equation (4b), ie, 

secBnBnn ⋅−⋅=∇⋅ pχ  (7) 

on the surface S.  For simplicity the case where the outer boundary is at infinity is chosen.   

We will use the method of Green’s functions, which relies on Green’s second 
identity 
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We introduce the free space Green’s function 
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which satisfies the equation 

      ∇
2G(x | ′ x ) = −4πδ x − ′ x ( )   . (15) 

Here,   x  is called the observation point, and   ′ x  is called the source point.  Identifying   u  in 
Equation (13) with χ and   v  with   G, using Equations (7), (8) and (15), and integrating 
over the entire external region yields 
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where     ′ x w ranges over the resistive wall surface   Sw .  Evaluating Equation (16) on the wall 
results in the expression 
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which expresses the potential on the wall in terms of the normal component of the 
magnetic field on the plasma and the (known) Green’s function.  This can be written 
symbolically as 
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is the vacuum response function.  NIMROD obtains this response matrix analytically for 
slab and cylindrical cases, and by the VACUUM code3 for toroidal cases. 

The desired resis tive wall boundary condition follows immediately.  We have 
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All quantities on the right hand are known from the geometry, from the internal solution, 
or from externally imposed conditions.  Only derivatives tangential to the wall need be 
computed.  Equation (21) can be used with Equation (3) to advance the internal field at 
the wall provided that we specify the secular magnetic field, Bsec .  The secular magnetic 
field is discussed in the next section. 

 

3.  THE SECULAR MAGNETIC FIELD 

Before beginning the mathematical discussion of the formulation in the general case, 
the simpler two-dimension case is discussed to elucidate a subtle point necessary for 
understanding the mathematical formulation to be written later.  Consider the (vacuum) 
magnetic field of a delta-function current source in two dimensions as shown if Figure 2   
for the three contours shown.  



As discussed above, the vacuum magnetic field can be composed into two parts: 
.secBB +∇= χv  Recall from Eq. (7) that Ampere’s Law was used to show  

∫ •= θζ θ
dlBvCI  where Iζ is the amount of current enclosed by the contour Cθ.  We first 

consider the contour C1 shown in Figure 2, which is a circle whose center is the current 
source.  From an elementary application of Ampere’s Law, the magnetic field is given by 
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Comparing this expression with secBB +∇= χv
1, it is apparent that for this contour, the 

magnetic field is completely described by the secular magnetic field, that is χ=0 and 

secBB =v .  Now consider contour, C2.  Because no current is enclosed by this contour, 
0sec =B  and χ∇=vB  which is the opposite case of contour C1.  Note that χ  will be a 

non-trivial solution to Poisson’s equation. 

 The third contour is the most relevant to toroidal cases.  Because the contour 
encloses the current source, it has a secular magnetic field component.  However, it is not 
clear that converting Eq. (22) into a form describing the magnetic field along the contour, 
such that the magnetic field is completely described by the secular magnetic field, is the 
most advantageous.  In general, the magnetic field will have both secular and single-
valued components, and the decomposition into each is somewhat arbitrary.  The 
decomposition chosen will determine the boundary conditions for the Poisson Equation 
for χ.  . 

 
Figur 2.  Three different contours leads to three different descriptions of the magnetic field.  

 The decomposition chosen in this paper follows the work of Lüst and Martensen 
that was developed for the mathematical description of the vacuum response for the δW 
formulation.  Their notation and formalism is used but reworked to make it more 
apparent for our problem. We consider a doubly-periodic system with the periodic 
coordinates θ and ζ.  The vacuum magnetic field can be written as 

                                                 
1 This suggests the common expression v χ= ∇B and *χ χ αθ= + , where *χ  representing the single-
valued potential and the second term representing the non-periodic (secular) part of the potential.  This is a 
very special case, so we avoid this notation.  In this paper, χ always represents the single -valued potential.   



ζζθθ γγχ YYB ++∇=v          (23) 

The constants γi’s are called the periods of the potential χ.  Based on the vacuum 
equations for the magnetic field, 0=⋅∇ vB  and 0=×∇ vB , the vectors Yi must satisfy 

    0=⋅∇ vY          (24a) 

    0=×∇ vY          (24b) 

with the appropriate boundary conditions to be discussed below.  For convenience, we 
will choose the normalization: 

i
jijCi

δ=•∫ dlY           (25) 

where δi
j is the Kronecker delta.  With this normalization, the periods are easily found 

using Ampere’s Law:2 

   θζζθ γγ II == ;            (26) 

where the currents, Ij are the amount of current enclosed by contours Ci.   

 Up to this point, the coordinate system used has not been specified.  Assuming 
axisymmetry, we will choose ζ=-φ, where φ is the symmetric toroidal angle in cylindrical 
coordinates.  To choose, θ, we consider the resistive wall shown in Figure 1.  Let the 
resistive wall be parameterized as R(θ), Z(θ).  This defines θ.  The wall defines a 
ρ=constant surface, where ρ is a generalized radial coordinate.  The unit normal vector 
for this surface is given conveniently as 

       
ρ
ρ

∇
∇=n) .         (27) 

This ρ,θ,ζ coordinate system is not a flux coordinate system, nor is it an orthogonal 
coordinate system in general. 

 The toroidal secular term is easiest to derive due to our use of axisymmetry; it is 
essentially the same as the 2 dimensional case discussed above.  Let ζζ ∇=Y .  Then the 

vacuum requirements of Eq. 24 are trivially satisfied.  Let Fπγζ 2= be the enclosed 
poloidal current in the toroidal field coils and plasma.  This is the same as the toroidal 
flux function evaluated at the separatrix, ( )sepF ψ .  The secular term for the for the z 

component is therefore ζψζ ∇= )(sec sepFB . 

The poloidal secular term is more difficult to calculate.  Let the vector Yθ  be given 
by 

     ρζθ
θ

θ
θ ∇×∇== JYY eY         (28) 

where J is the Jacobian of the coordinate system.  The direction vector is chosen such that 
is perpendicular to the ζ=constant plane, 0=∇⋅ ζθY . More importantly, and what 

                                                 
2 This is only true for axisymmetric systems.  For stellarators, the periods and the currents will be related by 
a matrix. 



essentially distinguishes this decomposition, is that that this secular term is perpendicular 
to the surface of interest, 0=⋅ n)θY , which implies that the flux through the wall will be 
calculated strictly from the single-valued part of the secular magnetic field.  That is, the 
boundary condition for Bn, (Eq. 7) will come from the scalar potential: 

    pv BnnBn ⋅=∇⋅=⋅ χ .         (29) 

It now remains to find the contravariant component Yθ given the conditions on Yi (Eq. 
24).  Taking the divergence: 
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which implies 

    ( )ραθ 1J−=Y            (31) 

such that ( ) ρζραθ ∇×∇=Y .  To find the coefficient α , the other vacuum condition is 
used: 
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The solution to this equation is ( ) ]')','(exp[ ∫−=
ρ
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dEC  where 

( ) ( ) θθρθθθ θρθρ gggE 111 /J)J/J/()','( −−− ∂∂+∂∂= .  This equation is to be parametrically 
solved for each θ.  Before discussing this further, we wish to verify that we get the same  
result as in the cylindrical case.  For a cylinder, the Jacobian is given by J=r and the 
metric elements are given by g rθ=0 and grr=r2 which give E=1/r.  Evaluating the integral, 
we obtain α=1/(2πr).  This gives the secular term, 
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which agrees with Eq. 22. 

For the toroidal case, it is generally not possible to solve for α  as a function of ρ 
because it would require constructing a coordinate system out to infinity and evaluating 
numerically.  On the surface of interest however, α is a constant and can be absorbed into 
the normalization which relates the period to the current.  That is, using Ampere’s Law, 
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such that θρα
θ

θθdg
Cw ∫ −= 1J/1)( .  This completely specifies the poloidal secular term. 



The complete description of the vacuum magnetic field including the secular terms 
for a doubly-periodic, axisymmetric system is therefore 
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4. Conclusions  

The key equation is given by Eq. 36, which can be used to determine the boundary 
conditions as expressed in Equations 21 and 2.  For tokamak cases, the single-valued 
potential is determined by the VACUUM code and for slab or cylindrical cases, it can be 
specified analytically.  For the secular terms, the constants for the contained currents, Iζ 
and F, are extremely important in nonlinear simulations because they are required for the 
n=0 solution. These constants must be specified independently from some external (or 
initial) conditions, and can depend on time.   For example, if one assumes that the 
currents contained within the resistive wall do not vary with time, then all of the 
necessary information is contained within the EQDSK (or similar) file.  Assuming 
constant current, if a displacement of the plasma (resulting, for example, from a vertical 
displacement event (VDE)) causes the plasma current to decrease, the deficit of current 
will automatically flow in the resistive wall.  This wall current, and its Ohmic power, can 
be computed directly from Equation (6) and Ohms law.  The currents could also be 
specified as functions of time, as determined from some current and flux programming 
applied to an external circuit, or from experimental traces.  This would be the case for 
feedback studies for example. 
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APPENDIX A. BOUNDARY CONDITIONS REQUIRED BY THE 
DIVERGENCE-DIFFUSION TERMS IN  NIMROD 

The magnetic field representation in NIMROD is not guaranteed to be solenoidal.  
Terms are added to the induction equation in order to control numerically the growth of 
  ∇ ⋅ B .  These terms alter the mathematical form of the induction equation and may also 
affect the boundary conditions that are required to advance the magnetic field in time.  
Understanding the effect of these terms and their role in determining the allowable 
boundary conditions is important for a fully consistent implementation of the resistive 
wall boundary condition. 

We investigate the boundary conditions imposed on the components of the magnetic 
field imposed by the “divergence-diffusion” terms that are added to the induction 
equation to control error in   ∇ ⋅ B .  We first deal directly with the differential form of the 
equations.  Later we will introduce spatial discretization using the finite element method.  
The formulation of the induction equation in NIMROD is represented by the differential 
equation 

      

∂B
∂t

= −∇ × E + κ∇∇⋅ B    . (A1) 

Note that B is no longer a pseudovector (derivable from the curl of a vector), so the 
additional terms may alter the required boundary conditions.  The divergence of Equation 
(1) leads to a diffusion equation for the divergence of B, i.e., 

      

∂
∂t

∇⋅ B = ∇⋅ κ∇∇ ⋅ B    . (A2) 

The idea is that errors in   ∇ ⋅ B  (introduced by the discretization of   ∇ × E , for example) 
will be “diffused” from short wavelength to long wavelength.  As with all diffusive 
processes, their ultimate fate will be determined by the boundary conditions. 

The volume integral of Equation (2) yields 

      

d
dt

∇⋅ BdV∫ =
d
dt

B ⋅ ndS∫ = κn ⋅ ∇(∇⋅ B)dS∫    . (A3) 

The first equality in Equation (3) states that the volume integral of   ∇ ⋅ B  will be 
preserved if the boundary conditions enforce the constancy of the surface integral of the 
normal component of B.  Since the surface integral of all periodic components of   B ⋅ n 
automatically vanishes, this condition applies explicitly only to the (m = 0, n = 0) 
component of the field.  Combined with the second equality in Equation (3), this implies 
that the surface integral of the normal derivative of   ∇ ⋅ B  (i.e., the flux of   ∇ ⋅ B  through 
the surface) must also vanish.  [Again, this constraint applies only to the non-periodic 
(m=0, n=0) component, as the other components will automatically vanish upon 
integration.]  This second equality implies that solutions of Equation (1) with 
    B ⋅ n = constant  (Dirichlet conditions) on the boundaries will automatically satisfy the 
surface condition (i.e., the vanishing of the divergence flux).  Conversely, if this second 
constraint is not satisfied by the initial conditions, then it is inconsistent to impose the  
boundary condition     B ⋅ n = constant  on the fields.  Since this concern arises only from the 
(m = 0, n = 0) component, it may not be a problem in practice, but it appears that some 



care should be taken in specifying the initial conditions to assure that all the constraints 
implied by Equation (3) are satisfied. 

A better measure of the divergence error in the magnetic field is the volume integral 

of     ∇ ⋅ B
2
.  Writing     u ≡ ∇ ⋅ B, we have, from Equation (2), 

      
d
dt

u
2
dV =∫ − 2 κ ∇u

2
dV∫ + 2 κun ⋅ ∇udS∫    .  (A4) 

Since   κ > 0 , we are assured of diminishing error (in the absence of sources) if the surface 
integral on the right hand side vanishes.  Note that this term is nonlinear in   ∇ ⋅ B , and so 
may contain contributions from all of the Fourier modes.  The vanishing of the last term 
in Equation (3) [imposed for the (m = 0, n = 0) component only] may not be sufficient to 
assure diminishing error.  The consequences of this for practical computations are 
unclear. 

We now introduce the finite element discretization of Equation (1).  The first term on 
the right hand side requires that only the tangential components of the electric field be 
specified on the boundaries.  These conditions were dealt with in a previous note.  Here 
we deal only with the additional terms.  After using the finite element ansatz, we find 
(symbolically) 

      

dBq
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α p(x)αq (x)dV

V∫
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                                         = −κ ∇αp(x)Bq ⋅ ∇αq (x)dV
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                                             + κ nα p(x)Bq ⋅ ∇αq(x)dS
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∫
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 (A5b) 

where we have assumed κ is a constant.  The last integral on the right hand side of 
Equation (5b) contains the boundary conditions to be applied to the “divergence-
diffusion” terms.  Clearly they only apply to the normal component of B.  Ignoring this 
term yields solutions that satisfy the condition 

      
nα p(x)Bq ⋅ ∇αq(x)dS

S

∫
q

∑ = 0 (A6) 

on the boundary, which is the natural boundary condition for this problem.  This is 
related to   ∇ ⋅ B  on the boundary, and does not appear to be consistent with specifying 
Dirichlet conditions for   B ⋅ n.  The relationship between Equation (6) and the constraints 
imposed by Equations (3) and (4) is also not clear.  If Dirichlet conditions are specified, 
then it seems that the surface integral in Equation (5b), which involves all the spatial 
components of B, must be included in the solution.  No such term appears in the 
NIMROD formulation. 



APPENDIX B.  EXAMPLE: A TWO-DIMENSIONAL CYLINDER 

We consider the two-dimensional example of finding the resistive wall boundary for 
a z-independent cylinder of radius a in polar coordinates (r,θ).  To do this we must find 
the external potential at the boundary of the cylinder.  This is a textbook problem, but it is 
nonetheless instructive to demonstrate the use of the formalism presented in the main 
body of the paper. 

The problem reduces to finding the free space Greens’ function, Equation (14), 
which in this geometry satisfies the equation 

    
∇2G(r,θ | ′ r , ′ θ ) = −

2π
r

δ(r − ′ r )δ(θ − ′ θ )    . (B1) 

Using the expansions 

    
δ(θ − ′ θ ) =

1
2π

e im(θ − ′ θ )

m=−∞

∞
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and 

    
G(r,θ | ′ r , ′ θ ) = gm(r | ′ r )e im(θ − ′ θ )

m=−∞

∞

∑    , (B3) 

we find that, for     m ≠ 0,     gm (r | ′ r ) satisfies the differential equation 

    

1
r

d
dr

r
dgm

dr

 

 
 

 

 
 −

m2

r2
gm = −

1
r

δ(r − ′ r )    . (B4) 

We will deal with the case     m = 0 later in this section. 

Equation (25) is valid for     0 ≤ r ≤ ∞ .  This is divided into two regions,     0 ≤ r < ′ r  (in 
which the solution will be denoted as   g

< ), and   ′ r < r ≤∞ (in which the solution will be 
deonited as   g

>).  The solution in each region is 

    gm = Arm + Br −m    . (B5) 

(Here we will deal only with the case     m > 0; the procedure for negative   m  is obvious.)  
The solution must remain finite at both 0 and ∞, so that 

    g
< = A<rm    , (B6a) 

and 

    g
> = B>r−m    . (B7b) 

The constants   A< and   B> are determined by the continuity of   g , and the discontinuity of 
its derivative, at   r = ′ r .  The latter is found by integrating Equation (25) across the delta-
function: 

    

dg>

dr
r= ′ r 

−
dg<

dr
r= ′ r 

= −
1
′ r 
   .  (B8) 

The solution is then 



    
gm

< =
1

2m
r
′ r 

 

 
 

 

 
 

m

   , (B9a) 

and 

    
gm

> =
1

2m
′ r 

r

 

 
 

 

 
 

m

   . (B9b) 

We can now use Equations (29a,b) in Equation (17) to find the potential at the 
boundary, for which we assume the expansion 

    
χ(a,θ ) = χm(a)e imθ

m=−∞

∞

∑     , (B10) 

We get (for     m > 0) 

    
χm (a) = a

m
Brm

(a)     , (B11) 

where     Brm
(a) is the   mth Fourier coefficient of the internal radial magnetic field at the 

boundary.  The reality of χ requires that     χ−m = χm
*  [here (..)* refers to the complex 

conjugate].  Equation (31) is verified by directly solving Laplace’s equation in the 
external region subject to the boundary condition given by Equation (7) and evaluating 
the result at the boundary.  It is also identical to the formulas used in the DEBS code.  
Solutions with z-dependence (which involve modified Bessel functions) have also been 
obtained with the formalism presented here and agree exactly with direct solutions of the 
boundary value problem.  

Since the axisymmetric (    m = 0) part of the internal radial magnetic field must 
vanish, the axisymmetric part of the periodic potential is a solution of Laplace’s equation 
subject to the boundary conditions that     dχ 0 / dr = 0 at both the wall and at infinity.  This 
part of the potential is thus a constant that we take to be zero without loss of generality. 

We now turn to the resistive wall boundary condition, which is given by Equation (6) 
with 

      
Bv = ∇χ +

aBθ vac0

r
eθ + Bzvac0

ez    . (B12) 

Here     Bθ vac0
 and     Bzvac0

 are the mean (axisymmetric) poloidal and axial magnetic field 
components just outside the resistive wall.  They arise from the non-single valued terms 
as indicated in Equation (9).  The poloidal electric field at the wall has only an 
axisymmetrix (    m = 0) part that is given by 

    
Eθ ( a) = ηw

µ0δw

−Bzvac0
( a) + Bz p0

( a)( )   . (B13) 

The mean axial field just outside the wall must be independently specified.  Since this 
field vanishes outside an infinitely long solenoid we set this term to zero.  (This implies 
that the coils that produce the internal axial field lie within the plasma/resistive wall 
system.)  Then the     m = 0 component of the poloidal electric field is 



    
Eθ 0

( a) = ηw

µ0δw

Bzp 0
( a)    ,  (B14) 

with all other Fourier components vanishing. 

The axial electric field at the wall is 

    
Ez(a) = ηw

µ0δw

1
a

∂χ
∂θ

a

+ Bθ vac0
(a) − Bθ p

(a)
 

 
 

 

 
    . (B15) 

Since     Bθ vac0
 has only an axisymmetric (    m = 0) part, the Fourier components of     Ez (a )  for 

    m ≠ 0 are given by 

    
Ezm

(a) =
ηw

µ0δw

1
a

imχm(a)− Bθ pm
(a)

 

 
 

 

 
    , (B16a) 

    
           = ηw

µ0δw

iBrp m
( a) − Bθ pm

(a)[ ]   ,  (B16b) 

where we have used Equation (31).  For     m = 0 we have 

    
Ez0

(a) =
ηw

µ0δw

Bθ vac0
(a) − Bθ p0

(a)[ ]   . (B17) 

Equations (34), (36b), and (37) give the tangential field at the wall completely in 
terms of the internal field at the wall and the constant     Bθ vac0

( a), and they constitute the 
resistive wall boundary condition for this case.  They can be used in Equation (2 ) (or, 
equivalently, (3)) to advance the internal magnetic field to the next time level. 

We remark that the analysis in this case was greatly simplified by the decoupling of 
the poloidal harmonics in cylindrical geometry.  As indicated in Equations (18-21), in 
general expressions for the electric field at the wall will involve a matrix that couples all 
points on the boundary.  The elements of this matrix are calculated by the VACUUM 
code. 


