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Abstract. The confinement and stability properties of the edge of a magnetically confined
fusion plasma have long resisted theoretical explanation. Numerical simulation with the M3D
extended MHD code shows that large periodic Edge Localized Modes (ELMs), associated with
otherwise good confinement, represent a new type of nonlinear MHD plasma instability, in
which a coherent plasma instability couples to the favorable part of a chaotic magnetic field.
The magnetic surface bounding the plasma typically contains at least one X-point. Under
small perturbations, such a Hamiltonian surface splits into two different asymptotic limits. A
ballooning-type plasma instability can couple to the “unstable” field manifold that forms bulges
around the original magnetic surface and then grow to penetrate deep into the plasma. The
magnetic field becomes chaotic over the affected region, allowing plasma loss from the core to
the outside. Eventually the instability saturates and the plasma relaxes back towards its original
axisymmetric shape. The interaction between the plasma and the homoclinic field perturbation
drives a multi-stage process that reproduces many experimental observations. This type of
instability may help to explain the wide range of ELM and ELM-free behavior observed in
fusion plasmas with X-points, as well as properties of plasma confinement.

1. Plasma boundaries with X-points

Magnetically confined toroidal plasmas routinely achieve high temperatures in a configuration
with one or two magnetic X-points on the bounding magnetic surface, where the field becomes
purely toroidal. X-points allow good control of the plasma shape against instabilities. They
support a steep edge pressure gradient with good plasma edge confinement (H-mode), favorable
for fusion reactivity. The outer legs of the X are intended to channel plasma losses along the
field lines, to divertors designed to handle them. In practice, the steep edge pressure gradient
and associated plasma current can drive large periodic instabilities (Edge Localized Modes or
ELMs) that erode the edge and dump plasma and energy onto the surrounding walls. The losses
can be severe in fusion burning plasmas and are one of the major constraints on the design of
next generation experiments such as ITER.

Despite its long history[1], the H-mode plasma edge has defied solid theoretical explanation.
The size and onset of ELMs are still difficult to predict. Plasma stability theory almost
universally assumes that the magnetic field responds to small perturbations in a coherent,
unitary fashion. This may be justified in the interior of toroidal plasmas, where the magnetic
flux surfaces often behave as surprisingly persistent KAM surfaces of the Hamiltonian system
that describes the magnetic field.



The magnetic boundary surface with an X-point behaves differently[2]. The X-point is
equivalent to a Hamiltonian hyperbolic saddle point. Under small perturbations, an X-point
surface splits into two, defined by different asymptotic limits, depending on the direction in
which the field line is traversed (eg, [4]). The “stable” limiting surface or manifold, on which the
field line moves away from the X-point, remains close to the original surface. The “unstable”
surface forms loops or bulges transverse to the stable surface, as the field line approaches the X-
point. The asymptotic intersection points, called homoclinic points, become more closely spaced
as the X-point is approached. Because the Hamiltonian is area preserving in a 2D surface of
section, successive loops of the unstable manifold have equal areas and their excursions around
the stable surface become longer and longer, becoming infinite as the X-point is approached.

Homoclinic intersections cause the magnetic field to become chaotic[4]. While a number of
theoretical properties can be proven, they are primarily asymptotic and qualitative. No criterion
exists for the limiting perturbation size that allows the theoretically predicted behavior. The
manifold shapes and intersection points are determined by the driving mechanism, which may
be far from Hamiltonian. Since in physical systems, infinite excursions are impossible because
of natural length scales and propagation delays, the plasma magnetic field differs from the
theoretical homoclinic tangle, although it may try to approach it.

ELMs have recently become accessible to numerical simulation with extended MHD models at
meaningful parameters. Previous, more approximate simulations of ELMs[5, 6] saw field mixing,
but did not consider field splitting. The present results show that ELMs in fact constitute a
new type of plasma instability that grows in the presence of a split, chaotic magnetic field. This
paper addresses certain aspects of the field splitting. Detailed results on ELMs are reported
elsewhere[7].

2. Numerical model

The extended MHD code M3D[8] simulates a free boundary plasma surrounded by a “vacuum”
region with open field lines that is bounded by a rigid, ideally conducting wall. The code solves
the compressible resistive MHD equations, including separate density and temperature, over the
entire region. The resistive MHD vacuum is characterized by low density, zero temperature, and
high resistivity.

Initial conditions were taken from a DIII-D discharge with large ELMs, the ITER-similar shot
119690 at t = 2656 ms[3], chosen because it was relatively collisional, νe = 0.7, and had a very
steep, narrow edge pressure gradient strongly unstable to MHD ballooning modes. The plasma
boundary had one lower X-point. A second, upper X-point existed a short distance above and
inboard from the top of the plasma. The plasma had toroidal magnetic field BT = 1.60 T at
major radius Ro = 1.76 m, current Ip = 1.042 MA, and neutral beam heating power PNB = 4, 8
MW. The central density was neo = 1.2 × 1020m−3, temperature Teo ≃ Tio = 1.83 keV, and
normalized beta βN = 1.81. The edge magnetic safety factor was q95 = 3.75 and central qo just
above unity. The simulations reported here neglect the equilibrium toroidal rotation.

The ELM is partly resistive. The model resistivity varied as (T/To)
−3/2 inside the plasma,

up to the large, constant vacuum value. A relaxed-parameter case with large central plasma
resistivity, Lundquist number S = 106, vacuum Svac = 103, normalized kinematic ion viscosity
µi/ρ = 10−5, and “vacuum” density nvac/no = 0.4 clearly demonstrates the instability. Cases
at more realistic parameters, including the actual resistivity S = 3.3 × 107, with µ = 6 × 106

and nvac/no = 0.1, show an analogous evolution, at reduced scale[7].
The parallel thermal conductivity, using the artificial sound wave method[8], was equivalent

to a diffusion coefficient κ‖ = 3.53(Ro/ao). Perpendicular thermal and particle diffusivities were

κ⊥ = Dn = 10−5. The dissipation, other than resistivity, was uniform except very near the wall,
where it became large, 10−2. Length is normalized to ao = 100 cm, not the plasma radius 55.7
cm. Time is normalized to the Alfvén time τA = Ro/vA, based on the plasma vacuum field and



initial density at the magnetic axis Ro. The reference time is τA = 0.78 µsec.
The grid in each poloidal plane was packed around the plasma edge, more tightly on the

outboard side. The smaller S case used 66 radial by 400 poloidal points, for 12871 total points,
for linear triangular finite elements. Other cases used 72 by 400 points, or 15769 total. FFTs
were used in the toroidal direction. Typical toroidal mode numbers ranged over |n| ≤ 22, or 72
poloidal planes with full dealiasing. Runs with |n| ≤ 48 modes show that the primary nonlinear
instability falls within the lower range.

3. Results

The initial configuration was taken from DIII-D experimental reconstructions that include the
large bootstrap current in the plasma edge. The ELM was started with a small random
perturbation of multiple toroidal harmonics at time t = 0.

The time evolution at large resistivity is shown in Figure 1. The top row shows temperature
contours. Black represents the vacuum region and its border the vacuum vessel. The toroidal
axis R = 0 lies to the left (inboard) side.

The early nonlinear instability at t = 66τA barely perturbs the outboard edge (large R) of the
plasma, as seen in the small fuzzy region and uneven point spacing on the outermost magnetic
surfaces. The perturbed magnetic region is a little wider at the bottom and top. By t = 89, the
nonlinear instability is strongly developed. The midplane oscillations broaden poloidally and
large plasma fingers grow above and below the midplane, around ±60 degrees. In contrast, the
standard ballooning eigenmode decreases away from the midplane. The growth rate also drops
from initial levels.

As time progresses to t = 133, the low density fingers grow inward, penetrating deeply into
the plasma. The protruding high density fingers disperse shortly outside the original magnetic
boundary, where the plasma shears off in “blobs.” Plasma spreads outside, over the outboard
region and then into the outboard divertor, while the core density, and to a lesser extent the
temperature, is reduced. (A central magnetic island grows as qo drops below unity, then decays
with little effect on the main instability.) At t = 178, smoothing of the edge field is visible.
In this case, the instability is unphysically strong and the loss of interior plasma reduces the
driving force before the later ELM stages can develop.

At more realistic parameters[7], including the actual resistivity, the growth rate and instability
magnitude are reduced. The finger variation is smaller and outgoing fingers shorter, but the field
still mixes over much of the plasma. Relatively early in the ELM, some of the outer magnetic
field lines partially relocalize in the edge region, enough to support a new, partial edge density
gradient. At a later stage, plasma moves into the inboard side and into the divertors at top and
bottom. As the original instability saturates, the plasma relaxes towards the original equilibrium
shape, with small changes in the profiles.

The chaotic field region mirrors the inward growth of the plasma fingers. A central core is
mostly preserved, inside some limiting flux surface. The behavior agrees with the theoretical
expectation[4] that the entire region containing homoclinic points becomes chaotic. This
behavior differs from interior plasma instabilities, where relatively narrow magnetic island chains,
interspersed with good, closely spaced KAM surfaces, often persist.

The magnetic boundary surface clearly splits. The +φ-direction puncture plots clearly show
lobes near the bottom X-point on the outboard side, as expected for the “unstable” manifold.
The surfaces are relatively smooth on the inboard side of the lower X-point and the outboard
side of the upper X-point, where this direction should coincide with the “stable” manifolds.
Since the stable manifolds of two different X-points cannot intersect, the +φ points connected
to the lower X-point cannot extend much above the top of the original plasma. The −φ points
closely shadow the lobes of the “unstable” manifold of the upper X-point and form large lobes
near the top of the plasma. They also show a smoother “stable” response on the outboard side



Figure 1. Time evolution of an ELM at large resistivity, shown at t = 67, 89, 133, and 178τA

for a perturbation started at t = 0. Temperature contours (top row), magnetic puncture plots
traced in +φ-direction (middle), and in the −φ-direction (bottom). Axis labels are arbitary
units.

of the lower X-point. The small wiggles on the inboard side are consistent with the “unstable”
manifold of the lower X-point, which is less strongly unstable than on the outboard side.

In 3D, the field lines and the plasma perturbations have helical shapes that roughly follow the
equilibrium field lines. Figure 3 shows a surface of constant temperature, colored according to
values of the poloidal magnetic flux. A single nearby field line, traced in the +φ-direction, shows
how the overall “chaotic” field lines approximately coincide with the temperature contours for



Figure 2. Helical structure at
t = 133, showing one temperature
contour, colored according to the
poloidal magnetic flux, and one +φ
field line, eventually lost to the
bottom. Tilted upward to show the
lower plasma fingers.

a significant number of toroidal transits, before (often) being lost at the X-point. The coupling
of field and plasma is much tighter at the smaller resistivity of a real ELM[7], where the plasma
slips through the field at a reduced rate.

The mismatch in shape between the idealized homoclinic tangle and the the plasma
interchange-type instability, together with the fact that only part of the field participates
constructively in the instability, reduces the growth rate over the case restricted field splitting[7].

4. Summary

Large scale MHD simulations show that Edge Localized Modes (ELMs) in high temperature,
toroidal fusion plasmas constitute a new class of nonlinear plasma instability. A coherent plasma
structure is able to couple dynamically to only part of a chaotic magnetic field, which then grows
with the plasma instability. The magnetic X-point on the plasma boundary surface causes it
to split into two asymptotic limits under perturbation. The field lines become chaotic, but
retain their helical, torus-wrapping character. Instabilities driven by the strong edge pressure
gradient, preferentially aligned along the equilibrium field, can proceed by a ballooning-like
flux-tube interchange that couples nonlinearly to the “unstable” loops of the split field. Low
density loops grow inwards by transferring plasma to the outward growing, higher density loops.
The magnetic field approximates a near-Hamiltonian homoclinic tangle, modified by the plasma
response. Over time, the plasma heals back to a nearly axisymmetric state. The resulting
multi-stage ELM has many features similar to experiment.

The demonstration that a chaotic magnetic field with only asymptotically definable structure
can couple effectively to the plasma motion may help to explain the large range of ELM and ELM-
free behavior observed in H-mode fusion plasmas, as well as properties of plasma confinement.
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