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Abstract

Nonlinear simulations with the M3D [1] code are performed of disruptions pro-
duced by large scale magnetohydrodynamic (MHD) instabilities. The toroidally sym-
metric and asymmetric wall forces produced during a disruption are calculated in an
ITER model. The disruption is produced by a vertical displacement event (VDE) and
a kink mode. Expressions are derived for the wall force, including the sideways force,
using a thin conducting wall model. The scaling of wall force with plasma current and
γτw is obtained, where γ is the kink growth rate and τw is the wall penetration time.
The worst case is with γτw ≈ 1. A theory is developed of the wall force produced by
kink modes. The theory is in qualitative agreement with the simulations and JET
experiments. In particular, the theory and simulations give correlations of sideways
force with sideways plasma displacement, and of toroidally varying plasma current
with toroidally varying vertical displacement.

I. Introduction

A very critical issue for the ITER device construction is to evaluate the forces
produced on the surrounding conducting structures during plasma disruptions [2].
Recent studies have documented results obtained from the JET experiment [3, 4, 5].
A major concern are non axisymmetric stresses caused by large scale MHD instabil-
ities [6]. We extend previous studies of vertical displacement events combined with
disruptions [7]. In particular, in this paper the emphasis is on the non axisymmetric
wall forces. New numerical diagnostics are derived and implemented, which directly
measure the forces in the resistive shell surrounding the plasma. The disruptions are
simulated using the M3D [1] code. The code solves resistive MHD equations with
parallel and perpendicular thermal transport. The plasma is bounded by a thin, re-
sistive wall [8] of thickness δ. The magnetic field perturbations outside the wall are
calculated with Green’s functions [9, 10]. The jump in the magnetic field across the
thin wall gives the wall force.

Numerical studies of disruptions at first used helical symmetry [11]. In the case
of zero magnetic shear, the plasma could deform into large magnetic bubbles. In
the presence of magnetic shear, the bubbles were suppressed. Three dimensional
reduced MHD [12] simulations [13] showed that overlap of magnetic islands produced
a chaotic rupturing of the magnetic field and loss of equilibrium. The magnetic field
chaos causes quenching of the plasma current and pressure.

The forces and stresses on the wall are due to currents flowing in the wall that
couple with the magnetic field. These currents are produced by inductive effects (eddy
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currents), due to time varying magnetic fluxes through the wall and also by conduction
currents, generally indicated as halo currents, that can flow from the plasma to the
wall. In the first case the plasma acts as a voltage generator and the wall current
adjusts according to the wall conductivity, while in the second case, the plasma is a
current generator and the current penetrating the wall is mainly determined by the
MHD evolution inside the plasma and in the outside region next to the wall. In this
case also, the wall resistivity affects the current, but in a more indirect way, through
the effect on the MHD instabilities of the resistive wall boundary conditions.

The present simulations are based on an ITER reference equilibrium. Disruptions
were produced by an axi-symmetric vertical displacement event (VDE), along with
a large scale kink instability. This is expected to be one of the worst case scenarios.
The scaling of the asymmetric wall force with current and wall penetration time
was investigated. The wall force is proportional to the growth rate of the instability
multiplied by the square of the current. For very large current and growth rate, it
appears to saturate. This behavior has a simple explanation, since increasing the
current (for a given toroidal magnetic field) is equivalent in our model to decreasing
the values of the safety factor, q, in the plasma and in particular decreasing the on
axis q below 1. This triggers fast kink modes. Looking at the effect of the wall
penetration time for these instabilities, we have found that the wall force increases in
the regime γτw ∼ 1. This is obtained in the simulations, for a given current profile,
by reducing the wall conductivity. This behavior indicates that the force at the wall,
i.e. the total current flowing in the wall due to induction and conduction effects, is
affected by the wall conductivity in such a way that the worst case scenario happens
when a substantial flux penetration through the wall is allowed.

Beside numerical results, a theory of wall force is developed, which is in quali-
tative agreement with the simulations. The theory agrees with the scaling of wall
force with plasma current. The theory and simulations give correlations of sideways
force with sideways plasma displacement, and of toroidally varying plasma current
with toroidally varying vertical displacement. The correlations of force and plasma
displacement are positive, until the plasma current touches the wall. A net toroidal
variation of of the plasma current is produced in the presence of a VDE and a kink
mode, even when the plasma current is not in contact with the wall. The positive
correlation of plasma current variation with plasma displacement does not establish
the Hiro current theory of wall force [6]. The paper is organized as follows. The resis-
tive wall model, including the derivation of the wall force, halo current, and toroidal
peaking factor (TPF), is described in section II. In section III the disruption sim-
ulations are presented, beginning with a brief description of the numerical method.
Simulational results are presented, including scaling of the wall force with plasma
current, halo current, and TPF. Analysis of the wall force with a circular cross sec-
tion, constant current model, is presented in section IV. Conclusions are presented in
section V.

II. Resistive Wall Model
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The plasma (or blanket) is bounded by a thin resistive wall. Surrounding this is
an outer vacuum region, which can contain external current sources.

The vacuum field is represented as [8]

Bv = ∇ψv ×∇φ+ ∇λ+R0B0∇φ (1)

where B0 is the toroidal magnetic field on axis. The reason for this term, as well as
ψv, is to be able to match the vacuum solution to a plasma equilibrium with a net
current, and net toroidal magnetic field, using a single valued function λ of poloidal
and toroidal angle. The function ψv depends on the poloidal coordinates R,Z and
is independent of toroidal angle φ. It satisfies the vacuum Grad Shafranov equation
∆∗ψv = R2∇R−2 · ∇ψv = 0.

To satisfy ∇ ·Bv = 0, ∇2λ = 0. On the resistive wall boundary, integrating ∇ ·B
across the thin shell gives the requirement that the normal component of magnetic
field is continuous at the wall,

Bv
n = Bp

n,

where Bv
n, B

p
n are the normal component of magnetic field in the vacuum, just outside

the wall, and the plasma (or blanket), just inside the wall. This gives a boundary
condition to determine the vacuum field.

The vacuum field is solved by the GRIN code [9]. From Green’s identity one
has an integral equation relating ∂ψv/∂n to given ψv, and λn to given ∂λn/∂n on
the boundary contour [10] When discretized, these integral equations become matrix
equations which are set up and solved by GRIN. Given a set of boundary points,
Ri, Zi,

(
∂ψv

∂n
)i =

∑
j

K0
ijψ

p
j + Sxi, (2)

λn
i =

∑
j

Kn
ij(B

p
n)j (3)

where K0
ij, K

n
ij are matrices that can be precomputed given the set of boundary points.

The external source term Sx in (3) can be obtained from the applied external currents,
or else using the “virtual casing” method. The source term Sx is chosen so that at
the initial time, ∂ψv/∂n = ∂ψp/∂n.

Now the magnetic field components in the plasma have to be matched at the thin
resistive shell of thickness δ and resistivity ηw. The boundary conditions are

n̂ × (Ev − Ep) = 0

where E = ηwJ and n̂ is the outward normal to the wall. In the wall, the current is
given by,

J =
1

µ0δ
n̂× (Bv − Bp). (4)

3



The normal component of the magnetic field is continuous at the wall: it satisfies

∂Bn

∂t
= −

ηw

δ
∇ · [n̂ × (Bv − Bp) × n̂] (5)

The normal component of the wall force density is

fwn = n̂ · Jw × Bw.

Inside the wall assume that

Bw =
1

2
(Bv + Bp).

The normal wall force density can be expressed

fwn =
1

2µ0δ
(|Bp|2 − |Bv|2). (6)

It has a simple physical meaning. It is the difference in magnetic pressure across the
wall, divided by the wall thickness. Integrating over the wall thickness δ gives the
magnetic pressure on the wall.

The tangential components of the wall force multiplied by the wall thickness are

fwl = JφBn =
Bn

µ0δ
(Bv

l −Bp
l ), (7)

fwφ = −JlBn =
Bn

µ0δ
(Bv

φ − Bp
φ), (8)

where l̂ = −n̂ × φ̂.
The total wall force per toroidal angle is given by

F =
µ0δ

2πR0LwB2
0

∫
dlR(fwnn̂ + fwl̂l + fwφφ̂). (9)

Here the force has been normalized to be dimensionless, where B0 is the magnetic
field on axis, and Lw =

∫
dl is the wall circumference. To obtain the dimensional

force, (9) must be multiplied by Fdim = 2πR0LwB
2
0/µ0. Of particular importance is

the net horizontal force, Fx. Here Fx is obtained by taking the horizontal components
of F, Fc =

∫
dφF · R̂ cos(φ), Fs =

∫
dφF · R̂ sin(φ). To allow for the horizontal force

to be an arbitrary direction, the horizontal force is

Fx = (F 2
c + F 2

s )1/2.

It is in units of Fdim.
The wall force is produced by induced wall current, as well as by halo currents,

which are poloidal currents penetrating the wall, parameterized by the halo current
fraction Fhalo of the total current. The asymmetry of the halo current, parameterized
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by the toroidal peaking factor (TPF), is also important for calculation of stress on
conducting structures. Nonlinear simulations of VDEs, disruptions, and resistive wall
modes with the M3D code [1] found Fhalo and TPF consistent with experimental data
[14, 7].

The halo current is the poloidal current flowing into the resistive wall. The normal
component of the poloidal current integrated over the wall, Ihalo, is

Ihalo(φ) =
1

2

∫
|n̂ · J|Rdl,

where dl is the length element tangent to the wall. Half the absolute value is taken
in the integrand because ∇ · J = 0 implies the total normal current is zero when
integrated over the wall and the toroidal angle φ. The toroidal peaking factor [15] is
defined as the maximum of

TPF =
2πIhalo(max)∫

Ihalodφ
.

In the following simulations, TPF ≈ 2. The ratio of halo current to total plasma
current is also important. The halo current fraction Fhalo is defined as the ratio

Fhalo =

∫
Ihalodφ∫
Iφdφ

,

where the toroidal current is Iφ =
∫
JφdRdZ.

The tangential wall current is related to the halo current. The tangential wall
current is

Jl =
1

µ0δ
(Bv

φ −Bp
φ). (10)

But µ0Jn = (1/R)∂(RBp
φ)/∂l − (1/R)∂(Bp

l )/∂φ, so that

RBp
φ = µ0

∫ l

dl′(RJn +
∂Bp

l

∂φ
)

where the first integral on the right is related to the halo current. Hence the terms,
JlBφ, which is part of the normal wall force (6), and JlBn, which gives the toroidal
wall force (8), are related to the halo current.

III. Disruption Simulation

The M3D extended MHD code [1] solves the full resistive MHD equations. The
open field line region surrounding the plasma is treated as a resistive MHD vacuum
with very large resistivity, small density, and low temperature. A resistive wall with
the shape of the experimental vacuum vessel, slightly smoothed, bounds the vacuum.
The code does not assume large aspect ratio or incompressibility and it keeps the full
plasma X-point geometry. The plasma velocity is evolved self-consistently, by solving
the MHD momentum evolution equations. Advection terms are treated numerically
with an upwind advection method [16]. It was also very helpful to use dealiasing [17]
in the toroidal direction, eliminating the upper third of the toroidal mode spectrum.
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Upwinding and dealiasing provided adequate numerical stabilization to permit the
simulation of complete disruption events.

A single, scalar temperature is assumed, with the ion and electron temperatures
taken to be proportional. Temperature evolution includes parallel[18] and perpendicu-
lar thermal transport. The effective parallel thermal diffusion coefficient is κ‖ = 2RvA,
much larger than the perpendicular diffusion, where R is the major radius and vA

is the Alfvén speed. The resistivity varies as T−3/2 self-consistently, where T is the
temperature. Spatially constant perpendicular thermal conductivity κ⊥ and viscosity
µ⊥ were employed.

M3D uses an unstructured mesh [19] with a finite element discretization in the
poloidal, (R,Z) plane. In the toroidal direction, a uniform mesh in toroidal angle φ
is used, with a pseudospectral discretization. The mesh boundary is treated as a thin
resistive wall. Outside the resistive wall is the vacuum region.

In the following, M3D is used to calculate a disruption. The initial state is an
ITER reference equilibrium, FEAT15MA, written to a file in EQDSK [20] format.
This was read into M3D and used to generate a mesh and initialize a nonlinear
simulation. The initial equilibrium had q = 1.1 on axis.

In the simulation the Lundquist number was chosen to be S = 105 on axis and
S = 102 at the wall. The Lundquist number must be much lower than experiment for
numerical reasons. The resistivity is calculated self consistently as T−3/2, where T is
the temperature. When the temperature decays during the simulation, the value of
S drops, although its value is held fixed at the wall. The wall resistivity ηw divided
by wall thickness, was chosen to have a range of values. In the following example of
Fig.1, τwvA/R = 102. The perpendicular thermal diffusivity was κ⊥ = 10−5ǫavA, and
the viscous diffusivity was µ⊥ = 10−4ǫavA, where a is the effective minor radius and
ǫ = a/R.

The velocity boundary condition was vn = 0. The magnetic field boundary condi-
tion was given by (5).

The initial equilibrium is VDE unstable. The equilibrium was made to be kink
unstable by rescaling. The initial equilibrium had q0 = 1.1, and initial total current I0.
The equilibrium was rescaled to generate equilibria with q < 1 on axis, and 1 < I/I0.
The poloidal magnetic field and toroidal current were rescaled by multiplying by a
rescaling parameter, and the pressure was rescaled by the square of the rescaling
parameter. Such a state might be produced during a VDE, as current is scraped off
by a wall interaction.

The following example was produced by first evolving a VDE, then adding a kink
perturbation as the plasma approached the wall. Fig.1 shows the nonlinear kink and
VDE at time t = 40.9τA after adding the kink perturbation. The wall resistivity for
this example had γτw ≈ 15, and the current enhancement was I/I0 = 1.6.The poloidal
magnetic flux is shown in Fig.1(a), and the toroidal current density C = −RJφ in
Fig.1(b). A current sheet is visible on the side of the current next to the wall. The
temperature T is shown in Fig.1(c). The contours are all shown in the poloidal plane
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(R,Z) with toroidal angle φ = 0.
In Fig.2, at time t = 51τA, the plasma is contact with the wall. Fig.2(a) shows

the poloidal magnetic flux penetrating the wall. Fig.2(b) shows the current. The
sheet current now has a dipole structure. This is because the current distribution
in the plasma is not uniform, but is peaked on axis. The displacement inside the
plasma pushes the current peak to the edge of the plasma, where it forms a dipole
structure with the skin current. The temperature in Fig.2(c) is also peaked near the
wall, similarly to the current, Both the current dipole and the temperature peak have
a helical structure. A short time later, t = 54.3τA, shown in Fig.3, both the current
dipole and the temperature peak are disappear from the plasma.

The distribution of the normal wall force density, fn(θ, φ), is shown in Fig.4 at
time t = 51τA. The horizontal coordinate θ is the poloidal angle of the wall from the
origin (R,Z) = (R0, 0), starting at the outboard midplane, going counter clockwise.
The vertical axis is the toroidal angle φ. The force structure is concentrated at the
top of the wall. θ ≈ π/2, and has an (m,n) = (1, 1) structure.

The time history of the normalized total pressure, total toroidal current, halo
current fraction and TPF are shown in Fig.5(a). The current is normalized to I0. The
pressure is in units of β, multiplied by 30 to fit on the same graph as the current.
The TPF peaks first, at about 2.4 Next the pressure quench begins, followed by the
current. The halo current fraction Fhalo peaks during the current quench.

The averaged horizontal wall force Fx is shown in Fig.5(b). It peaks during the
current quench.

In terms of ITER parameters, the toroidal field is Bφ = 5.3T, producing a magnetic
pressure of 2.24×107N/m2. Multiplying by the plasma surface area 2π

∫
dlR = 804m2

gives the total wall force in ITER F ITER
dim = 1.81 × 1010N . The horizontal wall

force is Fx × Fdim. In ITER terms, the peak sideways force in Fig.5(b) is F ITER
x =

Fx × F ITER
dim = 65MN. This is about the predicted value used in the ITER design.

The total wall force Fdim scales as I2
p , where Ip ∝ Ba is the plasma current, assuming

fixed aspect ratio and q. The ITER current is about 5 times greater than the JET
current, so that the JET horizontal force could be as large as 2.75 MN. This value is
consistent with experiments.

A scaling study the sideways force was performed by comparing results obtained
with different I/I0. A sequence of equilibria was produced by rescaling. In these cases,
the VDE was not evolved first. The scaling of the horizontal, sideways force, is shown
in Fig.6. The data can be fit with a quadratic scaling, Fx ∝ γτA(I/I0)

2, where γ is
the maximum mode growth rate, and τA = R/vA is the toroidal Alfvén transit time.
This scaling is consistent with the theory derived below. It fits for for smaller I/I0,
but it saturates for larger I/I0. It is similar to a scaling reported for VDEs [4].

The scaling of wall force with wall resistivity was obtained for equilibria with
I/I0 = 1.6, varying τw. This was also without a VDE. The results are shown in Fig.7.
The results are insensitive to the wall penetration time in the regime γτw → ∞. In
this regime the wall is a good conductor, and induced wall current produces the wall
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force. In the case γτw ∼ 1, there is significant magnetic flux penetration through
the wall, and the wall force is somewhat larger. In this case apparently there is a
competition between the kink amplitude increase and stochasticity produced in the
plasma. When the wall is a good conductor, the current interacts with the wall and
the kink reaches a relatively high amplitude before stochasticity fully develops and
smooths out the kink perturbation and plasma current. In the “insulating” limit
γτw → 0, the magnetic field is continuous and the force should eventually vanish.

IV. Analytic model of wall force

The wall force dependence on current and wall resistivity can be estimated using
a simple analytic model. The magnetic field is approximately,

B = ∇ψ × φ̂+Bφ̂, (11)

assuming a simple circular flux surface geometry (r, θ, φ). Assume constant toroidal
current −jφ = ∇2ψ0 = 2B/q0R0 inside the plasma boundary at r = a. Then Bθ =
−Br/(qR) for r ≤ a. The linearized equations describing the plasma [12] are

ψ = B0 · ∇Φ (12)

γ2∇ · ρ∇Φ = B0 · ∇∇2ψ1 + B1 · ∇∇2ψ0 (13)

where ρ = 0, r > a, and ρ = 1, r ≤ a. The plasma displacement ξ is

ξ = ∇Φ × φ̂. (14)

The perturbations are proportional to exp(iα), where α = mθ + nφ, and B ·
∇ exp(iα) = iBk‖ exp(iα), where k‖ = (qR)−1(−m+ nq). Integrating (13) across the
plasma - vacuum interface and using (12) to eliminate Φ, gives

(
γ

vA
)2 1

k‖
ψ′

p = k‖(ψ
′
v − ψ′

p) −
2m

aqR
ψp (15)

In the plasma region, r ≤ a, the magnetic perturbation is

ψp = ψ1α(r/a)m exp(iα), (16)

and in the vacuum region a < r ≤ b,

ψv = [ψ2α(r/a)m + ψ3α(a/r)m] exp(iα). (17)

Equate ψp = ψv at r = a. Outside the resistive wall, r > b, the magnetic perturbation
in the exterior vacuum region is

ψx = ψ4α(b/r)m exp(iα). (18)

Continuity at the resistive wall gives ψx = ψv at r = b. At the wall, (5) is

γψx =
ηw

δ
(ψ′

x − ψ′
v) (19)
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which yields

(γ +
ηwm

δb
)ψ4α = −

ηw

δ
ψ′

v

Using this expression and continuity at r = a and r = b, it is possible to express
ψ2α, ψ3α, ψ4α in terms of ψ1α. The skin current integrated across the jump at r = a is

Ka = −
∫
dr∇2ψ = ψ′

p − ψ′
v (20)

Similarly, the integrated skin current induced on the wall at r = b is

Kb = ψ′
v − ψ′

x (21)

Using expressions for ψ2α, ψ3α, ψ4α in terms of ψ1α, (20),(21) give

Ka = 2
m

a

1 + 2/(γτw)

1 − (a/b)2m + 2/(γτw)
ψ1α (22)

Kb = −2
m

b

(a/b)m

1 − (a/b)2m + 2/(γτw)
ψ1α (23)

where here τw = δb/(mηw). The relations for ψ2α, ψ3α, ψ4α can also be substituted
into (15) to yield the dispersion relation,

1

2
[1 − (

a

b
)2m](

γ

vA
)2 = −

1 + 2/(γτw)

1 − (a/b)2m + 2/(γτw)
k2
‖ −

k‖
Rq

(24)

In the limit ηw → 0, the kink mode is unstable for

m− 1 + (
a

b
)2m < nq < m (25)

In the opposite limit, ηw → ∞, the kink mode is unstable for

m− 1 < nq < m (26)

This is reasonable, because with an ideally conducting wall, there is wall stabilization,
while with an insulating wall, there is no wall stabilization.

The normal force density acting on the wall is

fr = −
Bθ

δ
Kb (27)

The magnetic perturbation ψ1α is expressed in terms of the plasma displacement ξr
using (11),(14). It is given by

ψ1α =
a

m
k‖ξrα (28)

Hence

fr = 2
B2

θ

δ

(m− nq)(a/b)m

1 − (a/b)2m + 2/(γτw)
ξrα (29)
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This gives an approximately γB2
θ or γI2/I2

0 scaling, taking for small growth rate,
γ ∝ (m−nq). The force in the radial direction R̂ can be obtained by using (28),(29),
noting that ξR = cos θξr, and integrating

FR = −
Bθ

2π

∫
dθ cos θKb

to obtain, if m = n = 1,

FR = B2
θ

(1 − q)(a/b)

1 − (a/b)2 + 2/(γτw)
ξR. (30)

Intuitively, this is reasonable: the displacement ξR causes magnetic field to be com-
pressed at the wall. The vertical displacement, from (14) is related to the horizontal
displacement. Taking ψ = ψ1(r/a) cos(θ+φ), then Φ = Φ1(r/a) sin(θ+φ). This can be
expressed as Φ = (Φ1/a)(Z cosφ+(R−R0) sinφ), so that ξR = ∂Φ/∂Z = (Φ1/a) cosφ
and ξZ = −∂Φ/∂Z = −(Φ1/a) sinφ. Hence

∂ξZ/∂φ = −ξR. (31)

In the above, the signs of jφ0/B,Bθ/B are negative, and ψ1 ∝ exp(imθ+ inφ). It
can be verified that the same results hold if signs of jφ0/B,Bθ/B are positive, and
ψ1 ∝ exp(imθ − inφ).

The vertical force can be obtained by using (28),(29), noting that ξZ = sin θξr,
and integrating

FZ = −
Bθ

2π

∫
dθ sin θKb

to obtain, if m = n = 1,

FZ = B2
θ

(1 − q)(a/b)

1 − (a/b)2 + 2/(γτw)
ξZ . (32)

According to (30), (32), FR, FZ have the same sign as ξR, ξZ . From (22),(23) the
skin current in the plasma has the opposite sign as the induced wall current. If the wall
force is produced by transfer of the plasma skin current to the wall [6], then FR, FZ

will have the sign of −ξR,−ξZ . This correlation can be compared with experiment.
In JET [6], the quantity dIφ/dφ was measured, where Iφ is the toroidal plasma

current as a function of toroidal angle, and was compared to the φ derivative of the
vertical plasma displacement dξZ/dφ. The current was measured in disruptions in
which there was usually an upward VDE, and occasionally a downward VDE. This
implies that the perturbations are shifted by the VDE displacement,

Jφ = Jφ0(r − ξvde sin θ) + Jφ1(r − ξvde sin θ) cos(θ + φ) (33)

where ξvde > 0 for an upward displacement. The vertical VDE displacement ξvde

interacts with the helical kink. Effectively the ξvde displacement gives a sin θ weighting
of the current. The total toroidally varying plasma current is

Iφ = −
∫
drrdθ

dJφ1

dr
ξvde sin θ cos(θ + φ) = −πξvde

∫
drJφ1 sinφ.
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where Jφ1 was first Taylor expanded and then integrated by parts. The quantity MIZ

is also measured in experiments. It is the vertical moment of the plasma current,

MIZ =
∫
dθdrr2 sin θJφ1 cos(θ + φ) = −π

∫
drr2Jφ1 sinφ.

Using Jφ1 = Kaδ(r − a), yields

dIφ
dφ

=
ξvde

a2

dMIZ

dφ
(34)

Using (20), MIZ can be expressed as

MIZ = Iφ(1 − q)ξZ . (35)

In JET experiments, dIφ/dφ and dMIz/dφ were found to be perfectly correlated with
the sign of the VDE, or ξvde, as in (34). The net toroidal variation of Iφ is here not
caused by current flowing into the wall [6], but by the vertical asymmetry produced
by the VDE displacement.

The correlations were checked in simulations. Fig.8 shows time history of FX =
C(FR, ξR), FY = C(FZ , ξZ), XY = C(ξR, dξZ/dφ), and CY = C(Iφ,MIZ), for I/I0 =
2.0, where

C(a, b) =
(
∫
dφab)

(
∫
dφa2)1/2(

∫
dφb2)1/2

.

Until the current touches the wall, the correlations agree with (30),(31),(32). At
that point, the sign of the wall force changes. The correlation CY is less good, with
(34), but is positive. The correlation CY between Iφ and MIZ holds even before the
current contacts the wall. The correlations FX,FY show that the force F ∝ ξ with
a positive sign, until the current reaches the wall. The XY correlation shows that
ξR ≈ −dξZ/dφ.

The circular model equilibrium used here omits both the shear of the plasma
current and the cross section shape, both of which should have a significant effect on
the wall force. However we do not expect that these features change the qualitative
results.

V. Discussion and conclusion

The toroidally symmetric and asymmetric wall forces produced during a disruption
are calculated in an ITER model. A new method is derived for calculating wall forces
directly from magnetic field pressure at a resistive wall. Simulations were done with
M3D using an ITER reference equilibrium, modified so that it was both VDE and
kink unstable. An example was chosen in which a VDE carried the plasma close to
the wall, when it became kink unstable. The simulations show that the pressure,
current and wall force are quenched by the contact of the plasma with the wall. We
remark that the VDE kink simulation that we have presented so far is not fully self-
consistent. In fact, the plasma edge should be scraped off or cooled by the plasma wall
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interaction. This should cause the current channel to shrink, and the current density
to increase, so that q on axis will decrease in time. This will in turn enhance plasma
instability and trigger the kink mode. In the simulation presented here, the current
is rescaled initially. A completely self consistent treatment will require additional
physics modeling of the plasma wall interaction.

A study was carried out of the scaling of the asymmetric wall force with growth
rate and current. The horizontal force is proportional to the growth rate of the
instability multiplied by the square of the current, then saturates at high current, as
shown in Fig.6.

The dependence of wall force on wall resistivity was also studied. If the wall is a
relatively good conductor, such that γτw ≫ 1, the wall resistivity has little effect. In
the case, γτw ≈ 1, the wall force is somewhat larger. We interpret this as the result
of a competition between the growth of the kink, which affects both halo and eddy
currents, and the plasma magnetic field stochastization, which smooths out plasma
pressure and current gradients, reducing the level of plasma instability, and therefore
slowing down the kink.

On the other hand, the insulating wall rapidly dissipates the wall current. In the
limit γτw → 0, the wall can not carry any current, and the wall force must vanish.
Halo currents also remain small.

A theory is developed of the wall force produced by kink modes. The theory is in
qualitative agreement with the simulations. In particular, the theory and simulations
give positive correlation of sideways force with sideways plasma displacement, and the
asymmetric vertical force with vertical plasma displacement. A net toroidal variation
of of the plasma current is produced in the presence of a VDE, whether the plasma
contacts the wall or not. In the case of an upward VDE interacting with a kink mode,
toroidal variation of plasma current is positively correlated to the toroidal variation
of the vertical component of the kink displacement.

In conclusion, in this paper we have presented a self consistent model of 3D MHD
disruption simulations. Within this model we calculated the wall forces, with partic-
ular emphasis on the non axi-symmetric sideways force. We found for ITER a force
in the range of 65 MN, a value somewhat larger but near to that used to design the
machine. In future work, we plan to compare simulation results with experimental
data from JET, NSTX, and other tokamaks. We also plan to generalize the wall
model to study the effects of both a first wall and outer vacuum shell, which are
planned for ITER.
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(a) (b) (c)

Figure 1: (a) poloidal flux ψ, (b) toroidal current −RJφ, (c) temperature T , at
t = 40.9τA, with toroidal angle φ = π. This example has I/I0 = 2, and γτw ≈ 15.
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(a) (b) (c)

Figure 2: (a) poloidal flux ψ, (b) toroidal current −RJφ, (c) temperature T , at
t = 51τA, with toroidal angle φ = π.
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(a) (b) (c)

Figure 3: (a) poloidal flux ψ, (b) toroidal current −RJφ, (c) temperature T , at
t = 54.3τA, with toroidal angle φ = π. Current sheet, current and temperature
maxima penetrate the wall.
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Figure 4: normal force density at t = 51τA, fn(θ, φ), where θ, the poloidal angle from
the origin, is the horizontal axis.
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Figure 5: (a) toroidal current C, pressure p, TPF, and halo current fraction Fh as a
function of time. (b) Horizontal force Fx as a function of time.

16



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 1  1.2  1.4  1.6  1.8  2  2.2  2.4

F
x

I/I0

Fx vs. I/I0 

Fx
gamma (I/I0)^2

Figure 6: Scaling of wall averaged non axisymmetric horizontal force density with
total current I/I0. Also shown is 0.006γ(I/I0)

2. This scaling fits for I/I0 ≤ 2.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.1  1  10  100  1000

F
x

gamma tau_w

Fx vs. gamma tau_w

Figure 7: Scaling of horizontal Fx, with γτw. The cases shown have I/I0 = 1.6. The
force tends to a limit for an ideal conducting wall γτw → ∞. The force increases for
small γτw.

17



-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60  70  80  90  100

F
X

,F
Y

,X
Y

,C
Y

 

t

FX,FY,XY,CY vs. time

FX 
FY 
XY 
CY 

Figure 8: Correlations as a function of time. The correlations change sign after Fx is
quenched.

18



References

[1] W. Park, E.V. Belova, G.Y. Fu, X. Tang, H.R. Strauss, L.E. Sugiyama, Plasma Simu-
lation Studies using Multilevel Physics Models, Phys. Plasmas 6, (1999) 1796.

[2] T. Hender et al. MHD stability, operational limits, and disruptions (chapter 3) Nuclear
Fusion 47 S128 - 202 (2007).

[3] P.C. de Vries, M.F. Johnson, I. Segui and JET EFDA Contributors, Nucl. Fusion
(2009) 49 055011.

[4] V. Riccardo, T. C. Hender, P. J. Lomas, B. Alper, T. Bolzonella, P. de Vries, G. P.
Maddison and the JET EFDA Contributors, Analysis of JET Halo Currents, Plasma
Phys. Control. Fusion (2004) 46 925

[5] V. Riccardo, P. Noll. S. P. Walker, Forces between plasma, vessel, and TF coils during
AVDEs at JET, Nucl. Fusion (2000) 40 1805.

[6] Leonid E. Zakharov, The theory of the kink mode during the vertical plasma disruption
events in tokamaks, Phys. Plasmas (2008) 15 062507.

[7] R. Paccagnella, H. R. Strauss, and J. Breslau, 3D MHD VDE and disruptions sim-
ulation of tokamak plasmas including some ITER scenarios, Nucl. Fusion (2009) 49

035003.

[8] H. Strauss, “MHD Simulations with Resistive Wall and Magnetic Separatrix,” Com-
puter Physics Communications 164, 40 (2004).

[9] Pletzer, A., “Python & Finite Elements”, Dr. Dobb’s Journal #334, p. 36 (March
2002) http://ellipt2d.sourceforge.net

http://w3.pppl.gov/rib/repositories/NTCC/catalog/Asset/grin.html

[10] Chance, M., Phys. Plasmas 4, 2161 (1997).

[11] R. B. White, D. A. Monticello, and M. N. Rosenbluth, Simulation of large magnetic
islands: a possible mechanism for a major tokamak disruption, Phys. Rev. Lett. 39,
1618 (1977)

[12] H. R. Strauss, Nonlinear three-dimensional dynamics of noncircular tokamaks, Phys.
Fluids 19, 134 (1976).

[13] B. V. Waddell, M. N. Rosenbluth, D. A. Monticello, and R. B. White, Nuclear Fusion
(1977). and D. K. Lee, Phys. Rev. Lett. 41, 1386 (1978)

[14] H.R. Strauss, Linjin Zheng, M. Kotschenreuther, W. Park, S. Jardin, J. Breslau, A.
Pletzer, Roberto Paccagnella, L. Sugiyama, M. Chu, M. Chance, A. Turnbull, Halo
Current and Resistive Wall Simulations of ITER, Twentieth IAEA Fusion Energy
Conference, Villamora, Portugal IAEA-CN-116/TH/2-2 (2004).

[15] Pomphrey, N., Bialek, J., Park, W., “Modeling the toroidal asymmetry of poloidal halo
currents,” Nuclear Fusion 38, 449 (1998).

19



[16] A. Jameson, Analysis and Design of Numerical Schemes for Gas Dynamics 1: Artificial
Diffusion, Upwind Biasing, Limiters and Their Effect Effect on Accuracy and Multigrid
Convergence, International Journal of Computational Fluid Dynamics, Vol. 4 (1995)
pp. 171-218.

[17] S. Orszag, On the elimination of aliasing in finite difference schemes by filtering high
- wavenumber components, (1971) J. Atmos. Sci 28. 1074.

[18] W. Park , D. Monticello, H. Strauss, J. Manickam, Phys. Fluids 29 (1986) 1171.

[19] H. R. Strauss and W. Longcope, An Adaptive Finite Element Method for Magnetohy-
drodynamics, J. Comput. Phys. 147, 318 - 336 (1998).

[20] L.L. Lao, H. St. Johh, R.D. Stambaugh, et al., Nucl. Fusion 25 (1985) 1611.

20


