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Abstract

A number of problems in resistive MHD magnetic fusion simulations describe plas-
mas with three regions: the core, the halo region, and the resistive boundary. Treat-
ing these problems requires maintainance of an adequate resistivity contrast between
the core and halo. This can be helped by the presence of a magnetic separatrix,
which in any case is required for reasons of realistic modeling. An appropriate mesh
generation capability is also needed to include the halo region when a separatrix is
present. Finally a resistive wall boundary condition is required, to allow both two
dimensional and three dimensional magnetic perturbations to penetrate the wall.
Preliminary work is presented on halo current simulations in ITER. The first step
is the study of VDE (vertical displacement event) instabilities. The growth rate is
consistent with scaling inversely proportional to the resistive wall penetration time.
The simulations have resistivity proportional to the —3/2 power of the tempera-
ture. Simulations have been done with resistivity contrast between the plasma core
and wall of 1000 times, to model the vacuum region between the core and resistive
shell. Some 3D simulations are shown of disruptions competing with VDEs. Toroidal
peaking factors are up to about 3.
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1 Introduction

In several resistive MHD simulational problems, the plasma model consists of three
regions: the plasma core, the plasma halo region, and a resistive wall connecting the
plasma to an extenal vacuum magnetic field.

Example problems having these regions are VDEs and halo current simulations in
ITER, with the aim of determining maximum wall stresses caused by asymmetric
forces during disruptions. Other problems with some of these features is the effect of
error magnetic fields on toroidal rotation, and the evolution of resistive wall modes.
Another related category of problem is the development of external kink modes,
particularly in compact quasi axisymmetric stellarators.

Tackling these problems requires a resistive MHD code to have three numerical ca-
pabilities. First, a three dimensional time dependent resistivity is needed, with ad-
equate contrast of maximum and minimum values. Second, mesh generation is re-
quired within a realistic boundary, which may contain a divertor. Third, a resistive
wall boundary condition is needed, with a method of solving the external vacuum
magnetic field.

These capabilities have been developed for the M3D code [1,2]. The resistivity is
proportional to the —3/2 power of the temperature. Simulations have been done with
temperature contrast between the plasma core and wall of 100, to model the halo
region between the core and resistive shell.

The M3D code includes resistive wall boundary conditions, which match the solution
inside the resistive wall to the exterior vacuum solution. The exterior problem is
solved with a Green’s function method, using A. Pletzer’s GRIN code [3].

As a computational example of a problem requiring these capabilities, preliminary
work is presented on halo current simulations in ITER[4]. The first step is the study
of VDE (vertical displacement event) instabilities[5]. The growth rate is consistent
with scaling inversely proportional to the resistive wall penetration time. Some 3D
simulations are shown of disruptions competing with VDEs. The toroidal peaking
factor[6] can be as high as 3.

2 Resistivity Model

A main problem is to have a time dependent resistivity, which is nearly constant
along magnetic field lines. In two dimensions, and in mildly three dimensional cases,



a magnetic separatrix can provide an adequate temperature contrast. Open field lines
are in contact with the wall, which is held at a relatively low constant temperature.
Inside the separatrix, if the cross field thermal conduction is small, the temperature
can be maintained at much higher values.

In M3D, the temperature is evolved with the “artificial sound” [7] model, which
resembles Landau fluid models [8]
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where vy = 2/3, T is the temperature, v is the velocity, B is the magnetic field, ¢ is
the heat flux, and 7, is a constant. In Landau fluid models, 7, is a more complicated
quantity, but it is difficult to generalize to realistic three dimensional magnetic fields.

In three dimensional disruption calculations, the magnetic field becomes stochastic
and no longer can isolate the halo region from the core. The regions mix and the core
is cooled, resulting in a thermal quench. In turn this causes a current quench, because
of the high resistivity.

3 Mesh Generation

M3D combines a two dimensional unstructured mesh with finite element discretization
in poloidal planes [9], with a pseudo spectral representation in the toroidal direction.
An unstructured mesh similar to that used in the calculations is shown in Fig.2(a).
The boundary geometry is realistic, for example the ITER - FEAT first wall[10]. The
halo part of the mesh containing the open magnetic field lines was made using the
ellipt2d package [11], which incorporates the Triangle [12] mesh generation code. The
core part of the mesh is aligned with the equilibrium magnetic flux surfaces. It is
possible to generate the mesh and initialize using EQDSK equilibrium files. These
files contain data describing the curves of the outer wall and the last closed flux
surface. These curves are filled in with an unstructured, but good quality mesh by
Triangle, which carries out a Delauney triangulation of this region. Extra points are
added to the boundaries to improvem mesh quality and ensure the desired resolution.
The region inside the last closed flux surface is triangulated by M3D. The EQDSK
file contains the poloidal flux function ¢ on a cartesian grid, and the corrdinates of
the magnetic axis. M3D uses this information to produce a mesh with sides aligned
with contours of constant ¢, as well as rays connecting the magnetic axis to the mesh
points on the last closed flux surface.



4 Resistive Wall Boundary Conditions

The plasma is bounded by a thin resistive wall. Surrounding this is an outer vacuum
region, which can contain external current sources.

The vacuum field is represented as

B, = Vi, x Vo + VA + [,V (1)

where I, is a constant which is equal to the constant part of I in the plasma. The
reason for Iy, as well as 1), is to be able to match the vacuum solution to a plasma
equilibrium with a net current, and net toroidal magnetic field. The function ),
depends on the poloidal coordinates R, Z and is independent of toroidal angle . It
satisfies the vacuum Grad Shafranov equation A*, = 0.

To satisfy V - B, = 0, V2X = 0. On the resistive wall boundary, integrating V - B
across the thin shell gives the requirement that the normal component of magnetic
field is continuous at the wall. This gives a boundary condition to determine the
vacuum field.

The vacuum field is solved by the GRIN code. From Green’s identity one has an
integral equation relating 0, /On to given 1, and A, to given 0\, /0n on the bound-
ary contour [13] When discretized, these integral equations become matrix equations
which are set up and solved by GRIN. Given a set of boundary points, R;, Z;
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where Kj; 0 , K3 are matrices that can be precomputed given the set of boundary points.
The source term S in (3) can be obtained from the applied external currents, or
else using the “virtual casing” method. In this method we first perform an ideal
equilibrium calculation, with ¢» = 0 on the boundary. Equating 0v,/0n = 0, /0n,
the source term required for equilibrium is found from S = 0, /0n where the right
side is obtained from the ideal equilibrium.

Now the magnetic field components in the plasma have to be matched using resistive
evolution at the inner boundary, which is a thin resistive shell of thickness § and



resistivity 7,,. Ohm’s Law at the resistive wall is

0A Mo .

In addition, a toroidal electric field is applied to balance resistive diffusion. An exam-
ple of the temperature in an equilibrium, with “virtual casing” source terms in the
boundary conditions, is shown in Fig.1(a).

5 VDE and Disruption Simulations

The VDE instability growth rate is proportional to the wall resistivity 7,,. This scaling
is consistent with simulations, as will be shown below. To get the scaling it seems
necessary to be in a regime in which the core resistive decay time 7., is longer than
the wall penetration time 7,, which in turn is longer than the halo resistive decay
time Thaloy Tecore = Tw = Thalo- Here 7.pe = STA; and Thq = (Thalo/Tcore)3/27—corea
where 74 = R/v4 is the Alfvén time, R is the major radius, v, is the Alfvén velocity,
Thato, Teore are temperatures in the halo and core respectively, S = a?v4/(nR) = 10%
in the simulations, where a is the geometric half width in the midplane, and S is
the initial value at the magnetic axis. For over two orders of magnitude variation in
Nw/0w, the growth rate of the VDE scales as v = 4.0n,,/d,,. The growth rate v as a
function of n,,/d,, is shown in Fig.2(b).

The temperature in the nonlinear stage of the VDE is shown in Fig.1(b) at time
t = 1037,4, as the plasma is pulled into the divertor.

The halo current is the poloidal current flowing into the resistive wall. The normal
component of the poloidal current integrated over the wall, I, is I,(¢) = & [ |- J|Rdl
Half the absolute value is taken in the integrand because V - J = 0 implies the total
normal current is zero when integrated over the wall and the toroidal angle ¢. The
toroidal peaking factor [6] is defined as the maximum of Ij,(¢) divided by its toroidal
average < I, >= 1/(27) [I,,d¢, that is, tpf = Ingmes)/ < In >. In the following

simulation, tpf ~ 2.

It is useful to normalize halo current to total plasma current. The halo current fraction
F}, will be defined as the ratio Fj, =< I, > / < I, >, where the denominator is
I, = [ JydRdZ.

In three dimensional simulations, disruptions can occur. In one scenario, a disruption
causes a thermal quench, which in turn causes a current quench. This is accompanied
by a VDE.



The following calculation is an example of this scenario. The initial state has ¢ = 0.6
on axis, with a ¢ = 1 inversion radius including most of the core plasma. This is in-
ternal kink unstable. When the instability is sufficiently nonlinear, toroidal coupling
to other modes causes a disruption. The plasma cools because of transport along
stochastic field lines. This raises the resistivity and dissipates the current. This is
acompanied by a VDE. The time history of the the normalized peak current and
peak temperature in Fig.3(a). The temperature quench proceeds the current quench.
The current, plotted with a dashed line, declines in value more slowly than the tem-
perature, shown as a solid line. The time history of the toroidal peaking factor is
shown in Fig.3(b), The toroidal peaking factor almost reaches 3, but most of the time
oscillates around 2. The dashed curve in Fig.3(b) is the halo current fraction F}, mul-
tiplied by 10 to be easily read. The halo current peaks at 0.4 but then decays to about
0.1. It should be remarked that this is the instantaneous halo current fraction; both
halo current and toroidal current are evolving in time. The temperature is shown at
the time ¢t = 11374 in Fig.1(c). After the disruption and expansion to the wall, the
plasma rapidly cools. This tends to quench halo current. The halo current in this case
is small.

6 Summary and Conclusion

A number of problems in resistive MHD magnetic fusion simulations describe plasmas
with three regions: the core, the halo region, and the resistive boundary. Treating these
problems requires maintainance of an adequate resistivity contrast between the core
and halo. This can be helped by the presence of a magnetic separatrix, which in any
case is required for reasons of realistic modeling. An appropriate mesh generation
capability is also needed to include the halo region when a separatrix is present.
Finally a resistive wall boundary condition is required, to allow both two dimensional
and three dimensional magnetic perturbations to penetrate the wall.

M3D simulations have been done of VDEs and halo currents produced by disruptions.
A resistive wall boundary condition was applied on a boundary having the shape of
the ITER - FEAT first wall. The spatially and temporally varying resistivity was
computed proportional to the —3/2 power of temperature. A temperature contrast
of 100 between the plasma core and the edge was applied.

Two dimensional simulations of VDEs confirmed that the growth rate is proportional
to the wall resistivity, over two orders of magnitude where the linear scaling assump-
tions are valid.

In three dimensional simulations, disruptions were initiated by a large inversion radius
internal kink. Thermal transport along a stochastic magnetic field caused a thermal



quench, followed by a current quench and a VDE. The toroidal peaking factor could
be as high as 3, and oscillated around 2.
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Fig. 3. (a) normalized peak toroidal current (dotted line) and peak temperature vs. time (b)
toroidal peaking factor tpf (solid line) and halo current fraction times ten, 10F}, (dashed
line) vs. time



