Numerical Simulation of Magnetic Reconnection using AMR

Ravi Samtaney, Steve Jardin Computational Plasma Physics Group Princeton Plasma Physics Laboratory Princeton University

Phillip Colella, Terry Ligocki

Applied Numerical Algorithms Group Lawrence Berkeley National Laboratory University of California

Sherwood Fusion Theory Conference Rochester NY, April 22-24, 2002

Acknowledgement: DOE SciDAC

Single-fluid resistive MHD Equations

Numerical Method

- Combination of generalized upwinding (8-wave formulation by Powell et al. JCP vol 154, 284-309, 1999) and vector potential
- Hyperbolic flux at cell interfaces given by $F(U_L, U_R) = \frac{1}{2} \left(F(U_L) + F(U_R) \right) + \frac{1}{2} \sum_{k=1}^{8} L_k (U_R - U_L) |\lambda_k| R_k$ where $L_k \frac{\partial F}{\partial U} = \lambda_k L_k$ and $\frac{\partial F}{\partial U} R_k = \lambda_k R_k$ The eigenvalues are $\lambda = \{u, u, u + c_a, u - c_a, u + c_f, u - c_f, u + c_s, u - c_s\}$
 - The fluid velocity advects both the entropy and div(B) in the 8-wave formulation
- The left and right states at a cell interface are obtained by fitting linear profiles and performing slope-limiting to the variables

projected on to the local characteristic space

Numerical Method

- Vector potential ψ evolved using central differences
- At end of each stage in time integration replace x and y components of ${\bf B}$ using ψ
 - Central difference approximation of div(**B**) is zero
 - Non-conservative source in 8-wave formulation is not required
- Correct total energy using newer values of **B**
 - Total energy conservation is not maintained
 - Tests indicate that loss of conservation is small

$$\left|\frac{\int e(t)dV}{\int e(0)dV} - 1\right| < 0.02$$

Adaptive Mesh Refinement with Chombo

- Chombo is a collection of C++ libraries for implementing blockstructured adaptive mesh refinement (AMR) finite difference calculations (<u>http://www.seesar.lbl.gov/ANAG/chombo</u>)
- Mixed language model
 - C++ for higher-level data structures
 - FORTRAN for regular single grid calculations
- Reusable components. Component design based on mathematical abstractions to classes
- Based on public-domain standards
 - MPI, HDF5
- Chombovis: visualization package based on VTK, HDF5
- AMR Parameters for magnetic reconnection in 2D
 - 4-5 AMR levels with refinement ratio of 2
 - clustering efficiency of 0.85
 - cluster buffer width of 3, remeshing every two time steps
 - refinement criterion: Current density J > 20/(L+1), where I = AMR level

Initial and Boundary Conditions

• Initial conditions on domain [-1:1]x[0:1] $\rho(x, y, 0) = 1$

$$u_i(x,y,0) = 0$$

$$p(x,y,0) = 0.2$$

$$\psi(x, y, 0) = -\cos k_x x \sin k_y y$$

$$B_{z}(x, y, 0) = -(k_{x}^{2} + k_{y}^{2})^{\frac{1}{2}} \cos k_{x} x \sin k_{y} y$$
$$k_{x} = \frac{3\pi}{2}, \quad k_{y} = 2\pi$$

- Boundary conditions $\vec{u} \cdot \hat{n} = 0$ $\vec{B} \cdot \hat{n} = 0$ $\nabla(\psi) \cdot \hat{n} = 0$ $\vec{E} \cdot \hat{t} = 0$ $\nabla(T) \cdot \hat{n} = 0$
- Other parameters: Re=10³, Pe= 10³
 Dimensionless conductivity and viscosity set to unity

Z-component of B

Y-component of **B**

Resitivity to annihilate middle island

$$\eta = \eta^{-} + (\eta^{+} - \eta^{-}) \left[1 - \exp(-177.69\psi^{2}) \right] \times max(0, -sign(\psi))$$

$$\eta^{+} = 0.1/S$$
J. Breslau, PhD thesis, Princeton University

Results for S=10⁴

Results for $S = 10^4$ (cont'd)

Y-momentum at t=1.86 shows plasma squeezed out with large equal and opposite velocities in a narrow region above and below the X-point of reconnection

Boxes indicate meshes at various

BERKELEY LAD

Energy budget for S=10⁴

•Energy exchange between magnetic and thermal energy during transient phase when the middle island is annihilated.

•Kinetic energy, though small, indicates "bouncing" during reconnection

Results: ψ at X-point of reconnection

 $S=10^3$ (well-resolved)

S= 10⁴ (marginally resolved)

Level 0 is the coarsest mesh while Level 3 is the finest mesh

Results:Max $\dot{\psi}$ scaling with S

Results for $S = 10^5$

t=1.59

t=3.07 "Intermittent" event with nearly ubiquitous refinement in the 5 level simulation

t=8.49

Note: Simulation may be underresolved

Alternative formulations - Entropy

- Using entropy instead of total energy
 - parabolic part cannot be expressed in conservation form
- Results for S= 10³ comparable to total energy formulation

– 14 % difference in peak $~\psi$

Alternative formulations- diffusing div(**B**)

- Use the 8-wave formulation modified for stability
 - Vector potential is not used
 - Requires the non-conservative source term $\frac{\partial B_k}{\partial x_k} \{0, B_i, u_i, B_j u_j\}^T$
- Central difference evaluation of $\nabla \cdot \vec{B} = 0$ should be $O(h^2)$
- At the end of each time step change **B** using $\vec{B} = \vec{B} + \lambda \nabla (\nabla \cdot \vec{B})$
 - This is equivalent to diffusing $\nabla \cdot \vec{B}$
 - The diffusion coefficient is $\lambda = O(h^2)$
- This method is stable for the reconnection problem
- Results shown for S=10⁴ show significant differences compared to the upwinding + vector potential formulation

Conclusion and Future Work

• This preliminary study indicates that AMR is a viable approach to efficiently resolve the near-singular current sheet in high Lundquist magnetic reconnection

S	Levels	Speedup
10 ³	3	8
10 ³	4	31
10 ⁴	3	6
10 ⁴	4	18
10 ⁵	4	9
10 ⁵	5	15

Speedup is defined as ratio of total simulation time taken by a unimesh calculation at the finest resolution to the total AMR simulation time Note: this is based on wall-clock time

- A numerical method was developed which combines 8-wave upwinding formulation with a vector potential to preserve the solenoidal property of the magnetic field
- Future work

BERKELEY LAB

- unsplit corner transport upwinding for better phase-error properties
- implicit treatment of resistive and viscous terms
- two-fluid MHD with Hall effect
- Implicit treatment of fast wave
- Projection to ensure div(B)=0

