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Single-fluid resistive MHD Equations

« Equations in conservation form \ector Potential Equationsl
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Numerical Method

« Combination of generalized upwinding (8-wave formulation by
Powell et al. JCP vol 154, 284-309, 1999) and vector potential

« Hyperbolic flux at cell interfaces given by
I i 18
F( L., UR) = 5 (F(UL) o F(DR)) o > Z L,:;(UR — UL)l)ﬁ.,:glR;;
k=1

OF OF
where Ly U Ax Ly and o 't kLU
The eigenvalues are
A= {8, U U CayUh—Cpy U+ Cp, U — Cf, U =+ Cygy U — Cg}
— The fluid velocity advects both the entropy and div(B)
in the 8-wave formulation

* The left and right states at a cell interface are obtained by fitting
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linear profiles and performing slope-limiting to the variables

f‘\l projected on to the local characteristic space il
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Numerical Method

* Vector potential TP evolved using central differences
« At end of each stage in time integration replace x and y

components of B using ’ip

— Central difference approximation of div(B) is zero

— Non-conservative source in 8-wave formulation is not required
« Correct total energy using newer values of B

— Total energy conservation is not maintained

— Tests indicate that loss of conservation is small
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Adaptive Mesh Refinement with Chombo

« Chombo is a collection of C++ libraries for implementing block-
structured adaptive mesh refinement (AMR) finite difference
calculations (http://www.seesar.lbl.gov/ANAG/chombo)

« Mixed language model

— C++ for higher-level data structures
— FORTRAN for regular single grid calculations

* Reusable components. Component design based on
mathematical abstractions to classes

« Based on public-domain standards

— MPI, HDF5
 Chombovis: visualization package based on VTK, HDF5
 AMR Parameters for magnetic reconnection in 2D
— 4-5 AMR levels with refinement ratio of 2
— clustering efficiency of 0.85
— cluster buffer width of 3, remeshing every two time steps
. — refinement criterion: Current density J > 20/(L+1),

/\l »  where L=AMR level
frreeee ‘m’
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Initial and Boundary Conditions
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Initial condltlons on domain [-1:1]x[0:1]

'u,?,(:r; 1,00 = 0

p(r,y,0) = 0.2

V(z,y,0) = —coskyrsink,y
B, (:z:' y, 0) = —(k2+ k;)% cos k,x sin k,y
k. 2 . k,=2r

ndary conditions
i-A=0 B- it =0
Vi) -i=0 E-t=0
V(T)-n=0
Other parameters: Re=103, Pe= 103

Dimensionless conductivity and viscosity

set to unity
Resitivity to annihilate middle island

n=n"+n"
Illi :n. — 1
=04/8

Z-component of B

Y-component of B

—n") [1 — exp(—l??.ﬁgf,bz)] x max(0 —szgn wljl

J. Breslau, PhD thesis, Princeton University
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Results for S=107

Stage 1 - | Easeisates
Middle islan = 1t-0.75
decays - ' ' '

Stage 2 i
Reconnectidn [#

t=1.86

Stage 3

Decay . E
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Results for S= 10* (cont’d)

Y-momentum at t=1.86 shows
equal and opposite velocities in

the X-point of reconnection
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plasma squeezed out with large

a narrow region above and below

.| Boxes indicate meshes at various

Energy budget for S=10%

*Energy exchange between magnetic
and thermal energy during transient
phase when the middle island is
annihilated.

*Kinetic energy, though small, indicates
“bouncing” during reconnecti

PRINCETON PLASMA
PHVYSICS LABORATORY



Results: ¥ at X-point of reconnection
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S=103% (well-resolved)

Level O is the coarsest mesh while Level 3 is the finest mesh
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S= 10%(marginally resolved)
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Results:Max ¢ scaling with S

+ Actual '
Fit 572
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Results for S= 10°

@ t=1.59

] ' t=3.07
ST e ' “Intermittent”
r i event with
' nearly ubiquitous
il | il refinement in the
5 level simulation

| t=8.49
m ' Note: Simulation

may be under-
resolved
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Alternative formulations -Entropy

* Using entropy instead of total energy
— parabolic part cannot be expressed in conservation form
* Results for S= 103 comparable to total energy
formulation

— 14 % difference in peak
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Alternative formulations- diffusing div(B)

Use the 8-wave formulation modified for stability
— Vector potential is not used 9B
. . k-'
— Requires the non-conservative source term 10 Bi i, Bjus}
« Central difference evaluation of V - B = 0 should be O(h?)

« Atthe end of each time step change B using
B=B+\V(V-B)
— This is equivalent to diffusing Vv - B
— The diffusion coefficientis A = O (h?)

e This method is stable for the
reconnection problem SelEE
» Results shown for S=104 2 Eae
show significant differences  sow i
compared to the upwinding = IS8 i
+ vector potential formulation®
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Conclusion and Future Work

* This preliminary study indicates that AMR is a viable approach to
efficiently resolve the near-singular current sheet in high Lundquist

e AT numerical me

rrngnm"r' reconnection
S Levels | Speedup
103 3 8
103 4 31
104 3 6
10# 4 18
10° 4 9
10° 5 15

od was

Speedup is defined as ratio of total
simulation time taken by a unimesh
calculation at the finest resolution to
the total AMR simulation time

Note: this is based on wall-clock
time

developed which combines 8-wave upwinding

formulation with a vector potential to preserve the solenoidal property of
the magnetic field
e Future work
— unsplit corner transport upwinding for better phase-error properties
— implicit treatment of resistive and viscous terms
— two-fluid MHD with Hall effect

g

- » — Implicit treatment of fast wave
_’_a l — Projection to ensure div(B)=0 %

_— 3D magnetic reconnection
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