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SEL Code Features

Ø Spectral elements: exponential convergence of spatial 
truncation error.

Ø Adaptive grid: alignment with evolving magnetic 
field + adaptive grid packing normal to field

Ø Fully implicit, 2nd-order time step, Newton-Krylov 
iteration, static condensation preconditioning.

Ø Highly efficient massively parallel operation with 
MPI and PETSc.

Ø Flux-source form: simple, general problem setup.

Ø AVS and XDRAW visualization



New Developments

Ø Static condensation highly successful.  

Ø Speed increased by a factor of 1000.

Ø Significant improvements made in 1D adaptive 
gridding.  Slava Lukin.

ØMajor progress made in formulating grid 
alignment with the evolving magnetic field.



Spatial Discretization



Uniform Nodal Basis Jacobi Nodal Basis Spectral  (Modal) Basis

Alternative Polynomial Bases

• Lagrange 
interpolatory 
polynomials

• Uniformly-spaced 
nodes

• Diagonally 
subdominant

• Lagrange 
interpolatory 
polynomials

• Nodes at roots of 
(1-x2) Pn

(0,0)(x)

• Diagonally 
dominant

• Jacobi polynomials 
(1+x)/2, (1-x)/2,    
(1-x2) Pn

(1,1)(x)

• Nearly orthogonal

• Manifest exponential 
convergence

Ronald D. Henderson, “Adaptive spectral element methods for turbulence and transition,” in 
High-Order Methods for Computational Physics, T.J. Barth & H. Deconinck (Eds.), Springer, 1999.



Fully Implicit Newton-Krylov Time Step

• Nonlinear Newton-Krylov iteration.
• Elliptic equations: M = 0.
• Static condensation, fully parallel.
• PETSc: GMRES with Schwarz ILU, 

overlap of 3, fill-in of 5.



Preconditioning with Static Condensation

Ø Equation (4) solved by local LU factorization and back substitution.
Ø Equation (6), substantially reduced, solved by global Newton-Krylov.







Magnetic Reconnection, Final State
Magnetic Flux

Current Density

Stream Function

Vorticity

A = 1
M = 1/2
η = 10-4

µ = 10-4

ε = 10-4

dt = 20
nx = 6
ny = 16
np = 12 

nproc = 16
cpu = 3.5 hr



Magnetic Reconnection, Time Dependence

γ= 0.015,  dt = 20,  γ dt = 0.3
Second-order-accurate time step

Excellent agreement with linear analysis and code





The Need for a 3D Adaptive Field-Aligned Grid

Ø An essential feature of magnetic confinement is very strong anisotropy, χ >> χ⊥.

Ø The most unstable modes are those with k <<  1/R < 1/a   <<  k⊥.

Ø The most effective numerical approach to these problems is a field-aligned grid 
packed in the neighborhood of singular surfaces and magnetic islands. NIMROD.

Ø Long-time evolution of helical instabilities requires that the packed grid follow the 
moving perturbations into 3D.

Ø Multidimensional oblique rectangular AMR grid is too large and does not resolve 
anisotropy.  

Ø Novel algorithms must be developed to allow alignment of the grid with the 
dominant magnetic field and automatic grid packing normal to this field.

Ø Such methods must allow for regions of magnetic islands and stochasticity.





2D: Poloidal flux function is exact solution. 
3D: No exact solution, but should provide useful approximate solution.



λ = 3.241 x 10-18

λ = 1.538 x 10-7 λ = 1.019 x 10-4

Singular Value Decomposition with LAPACK Routine DGESVD

Eigenvalues λ

Luλ = λuλ



Lanczos Method for 
Singular Value Decomposition

Ø LAPACK direct method gives all the simple eigenpairs,          
Luλ = λuλ, of a full matrix L of order n, work scales as n3. 

Ø We need a few generalized eigenpairs of a sparse matrix,    
Luλ = λΜuλ, mass matrix M determines orthogonality properties.

Ø Lanczos method, Krylov subspaces, cf. conjugate gradients.

Ø Golub & Van Loan, Matrix Computations, 3rd Edition, Johns 
Hopkins,1996; Cullum & Willoughby, Lanczos Algorithms for 
Large Symmetric Eigenvalue Computations, SIAM, 2002.

Ø Lowest few eigenpairs used for flux coordinate;                 
highest few eigenpairs for angular coordinates.



Future Developments

Ø Curvilinear geometry using logical coordinates, metric tensor.

Ø 2D adaptive gridding.

Ø Multiple grid blocks.

Ø Plasma and fusion problems
• Magetic reconnection
• Scrape-off layer.

Ø 3D version

Ø Improved visualization

Ø Improved preconditioning as needed


